Что такое полимеры? Виды полимерных материалов

Развитие современных технологий привело к появлению материалов, которые обладают исключительными эксплуатационными качествами. Полимерные материалы могут обладать молекулярной массой от нескольких тысяч до нескольким миллионов. Основные качества подобных материалов определяют их большое распространение. С каждым годом на долю полимеров приходится все большее количество выпускаемой продукции. Именно поэтому рассмотрим их особенности подробнее.

Свойства полимеров

Применение полимеров весьма обширно. Это связано с особыми качествами, которых обладает рассматриваемый материал. Сегодня полимерные материалы встречаются в самых различных областях, присутствуют практически в каждом доме. Процесс производства полимерных материалов постоянно совершенствуется, проводится изменение состава, за счет чего он приобретает новые эксплуатационные качества.

Физические свойства полимеров можно охарактеризовать следующим образом:

  1. Низкий показатель коэффициента теплопроводности. Именно поэтому некоторые полимеры могут применяться в качестве изоляции при проведении некоторых работ.
  2. Высокий показатель ТКЛР обуславливается относительно высокой подвижностью связей и постоянной сменой коэффициента деформации.
  3. Несмотря на высокий показатель ТКЛР, полимерные материалы идеально подходят для напыления. В последнее время часто можно встретить ситуацию, когда полимер наносится на поверхность в виде тонкого слоя для придания металлу и другим материал антикоррозионных качеств. Современные технологии нанесения позволяют получать тонкую защитную пленку.
  4. Удельная масса может варьироваться в достаточно большом диапазоне в зависимости от особенностей конкретного состава.
  5. Довольно высокий предел прочности от части вызван повышенной пластичностью. Конечно, показатель существенно уступает тем, которые имеет металл или сплавы.
  6. Прочность полимеров относительно невысокая. Для того чтобы повысить значение ударной вязкости проводится добавление в состав различных дополнительных компонентов, за счет чего получаются особые разновидности полимеров.
  7. Стоит учитывать низкую рабочую температуру. Полимерные материалы плохо справляются с нагревом. Именно поэтому многие варианты исполнения могут работать при температуре не выше 80 градусов Цельсия. Если превысить рекомендуемый температурный порог, то есть вероятность, что сильный нагрев станет причиной повышения пластичности полимерного материала. Слишком высокая пластичность становится причиной снижения прочности и изменение других физических свойств.
  8. Удельное сопротивление может варьироваться в достаточно большом диапазоне. Примером таких полимеров назовем ПВХ твердый, который имеет 10 17 Ом×см.
  9. Многие полимерные материалы имеют повышенную горючесть. Этот момент определяет то, что в некоторых отраслях промышленности использовать полимеры нельзя. Кроме этого химический состав определяет то, что при горении могут выделять токсичные вещества или едкий дым.
  10. При применении особой технологии производства поверхность может иметь сниженный показатель коэффициента трения по стали. За счет этого покрытие служит намного дольше, и на нем не появляются дефекты.
  11. Коэффициент линейного расширения составляет от 70 до 200 10 -6 на градус Цельсия.

Рассматривая характеристики распространенных полимеров, не стоит забывать о нижеприведенных качествах:

  1. Хорошие диэлектрические свойства позволяют использовать полимерный материал без опаски поражения электричеством. Именно поэтому полимеры довольно часто применяют при создании инструментов и оборудования, предназначенного для работы с электричеством.
  2. Линейные полимеры способны восстанавливать свою первоначальную форму после длительного воздействия нагрузки. Примером можно назвать воздействие поперечной нагрузки, которая изгибает деталь, но после ее пропадания форма не сохраняется.
  3. Важное качество всех полимеров – существенное изменение эксплуатационных качеств при введении небольшого количества примесей.
  4. Сегодня полимерные материалы встречаются в самых различных агрегатных состояниях. Примером можно назвать клей, смазку, герметик, краски, некоторые твердые полимерные материалы. Большое распространение получили твердые пластмассы, которые используются при производстве самого различного оборудования. Как ранее было отмечено, вещество обладает высокой эластичностью, за счет чего был получен силикон, резина, поролон и другие подобные полимерные материалы.

Стоит учитывать тот момент, что химический состав полимерных материалов может существенно отличаться. В ГОСТ представлена процедура качественной оценки, которая основана на баллах.

Большое распространение полимерные материалы получили в промышленности, так как имеют повышенную стойкость к неорганическим реактивам. Именно поэтому они применяются при производстве баков для чистой воды или особо чистых реактивов.

Вся приведенная выше информация определяет то, что полимеры получили просто огромное распространение в самых различных отраслях. Однако не стоит забывать, что насчитывается несколько десятков основных типов полимерных материалов, все они обладают своими определенными качествами. Именно поэтому следует подробно рассмотреть классификацию полимерных материалов.

Классификация полимеров

Есть довольно большое количество показателей, по которым синтетические полимерные материалы могут классифицироваться. При этом классификация затрагивает и основные эксплуатационные качества. Именно поэтому рассмотрим разновидности полимерных материалов подробнее.

Классификация проводится по агрегатному состоянию:

  1. Твердые. Практически все люди знакомы с полимерами, так как они используются при изготовлении корпусов бытовой техники и других предметов быты. Другое название этого материала – пластмасса. В твердой форме полимерный материал обладает достаточно высокой прочностью и пластичностью.
  2. Эластичные материалы. Высокая эластичность структуры получила применение при производстве резины, поролона, силикона и других подобных материалов. Большая часть встречается в строительстве в качестве изоляции, что также связано с основными эксплуатационными качествами.
  3. Жидкости. На основе полимеров производится достаточно большое количество самых различных жидких веществ, большая часть которых также применима в строительстве. Примером назовем краски, лаки, герметики и многое другое.

Жидкие полимеры — краски
Эластичные полимеры — резиновое покрытие

Различные виды полимерных материалов обладают разными эксплуатационными качествами. Именно поэтому следует рассматривать их особенности. Есть в продаже полимеры, которые до соединения находятся в жидком состоянии, но после вступления в реакцию становятся твердыми.

Классификация полимеров по происхождению:

  1. Искусственные вещества, характеризующиеся высокомолекулярной массой.
  2. Биополимеры, которые еще называют природными.
  3. Синтетические.

Большее распространение получили полимерные материалы синтетического происхождения, так как за счет смешивания самых различных веществ достигаются исключительные эксплуатационные качества. Искусственные полимеры сегодня встречаются практически в каждом доме.

Классификация синтетических материалов проводится также по особенностям молекулярной сетки:

  1. Линейные.
  2. Разветвленные.
  3. Пространственные.

Классификация проводится и по природе гетероатома:

  1. В главную цепь может входить атом кислорода. Подобное строение цепочки позволяет получить сложные и простые полиэфиры и перекиси.
  2. ВМС, которые характеризуются наличием атома серы в основной цепочке. За счет подобного строения получают политиоэфиры.
  3. Можно встретить и соединения, в главной цепочке которых есть атомы фосфора.
  4. В главную цепочку могут входить и атомы кислорода и с азотом. Наиболее распространенным примером подобного строения можно назвать полиуретаны.
  5. Полиамины и полиамиды – яркие представители полимерных материалов, которые в своей главной цепочке имеют атомы азота.

Кроме этого выделяют две большие группы полимерных материалов:

  1. Карбоцепные – вариант, который имеет основную цепочку макромолекулы ВМС с одним атомом углерода.
  2. Гетероцепные – структура, которая кроме атома углерода имеет и атомы других веществ.

Существует просто огромное количество разновидностей карбоцепных полимеров:

  1. Высокомолекулярные соединения, которые называют тефлоном.
  2. Полимерные спирты.
  3. Структуры с насыщенными главными цепочками.
  4. Цепочки с насыщенными основными связями, которые представлены полиэтиленом и полипропиленом. Отметим, что сегодня подобные разновидности полимеров получили просто огромное распространение, их применяют при производстве строительных материалов и других вещей.
  5. ВМС, которые получаются на основе переработки спиртов.
  6. Вещества, полученные при переработке карбоновой кислоты.
  7. Вещества, полученные на основе нитрилов.
  8. Материалы, которые были получены на основе ароматических углеводородов. Самым распространенным представителем этой группы является полистирол. Он получил широкое применение по причине высоких изоляционных качеств. Сегодня полистирол используют для изоляции жилых и нежилых помещений, транспортных средств и другой техники.

Вся приведенная выше информация определяет то, что существует просто огромное количество разновидностей полимерных материалов. Этот момент также определяет их широкое распространение, применение практически во всех отраслях промышленности и сферах деятельности человека.

Применение полимеров

Современная экономика и жизнь людей просто не может обойтись без полимерных материалов. Это связано с тем, что они обладают относительно невысокой стоимостью, при необходимости основные эксплуатационные качества могут изменяться под конкретные задачи.

Применение полимерных материалов

Рассматривая применение полимеров, следует уделить внимание нижеприведенным моментам:

  1. Активное производство началось в начале 20 века. Изначально технология производства заключалась в переработке низкомолекулярного сырья и целлюлозы. В результате их переработки появились краски и пленки.
  2. Современные полимеры повлияли на развитие всех отраслей промышленности. В момент развития кинематографа появление прозрачных пленок позволило снимать первые картины.
  3. В современном мире рассматриваемые полимерные материалы применяется практически во всех отраслях промышленности. Примером можно назвать использование полимеров при производстве игрушек, оборудования, лекарственных средств, тканей, строительных материалов и многого другого. Кроме этого они становятся частью других материалов для изменения их основных эксплуатационных качеств, применяются при обработке натуральной кожи или резины. За счет применения пластика производители смогли снизить стоимость компьютеров и мобильных девайсов, сделать их легче и тоньше. Если сравнить металл и полимеры, то разница в стоимости может быть просто огромной.
  4. Совершенствование технологии производства полимерных материалов привело к появлению более современных композитов, которые стали использовать в машиностроении и многих других отраслях промышленности.
  5. Применение полимера связано и с космосом. Можно назвать примером создание как летальных аппаратов, так и различных спутников. Существенное снижение массы позволяет с меньшими затратами преодолеть земное притяжение. Кроме этого полимеры хорошо известны тем, что выдерживают воздействие окружающей среды, представленное перепадами температуры и влажности.

Изначально в качестве сырья при производстве полимеров использовали низкокачественные низкомолекулярные вещества. Именно поэтому у них было огромное количество недостатков. Однако совершенствование технологий производства привело к тому, что сегодня полимеры обладают высокой безопасностью при применении, не выделяют вредных веществ в окружающую среду. Поэтому они стали все чаще использоваться при изготовлении вещей, применяемых в быту.

В заключение отметим, что рассматриваемая область постоянно развивается, за счет чего стали появляться композитные материалы. Они обходятся намного дороже полимеров, но при этом обладают исключительными физическими, химическими и механическими качествами. В ближайшее время полимерные материалы будут все также активно применяться в самых различных областях, так как альтернативы для их замены пока не существует.

Большая часть современных строительных материалов, лекарственных средств, тканей, предметов быта, упаковочных и расходных веществ является полимерами. Это целая группа соединений, имеющих характерные отличительные признаки. Их очень много, но несмотря на это, число полимеров продолжает расти. Ведь химики-синтетики ежегодно открывают все новые и новые вещества. При этом особенное значение во все времена имел именно природный полимер. Что же собой представляют эти удивительные молекулы? Каковы их свойства и в чем заключаются особенности? Ответим на эти вопросы в ходе статьи.

Полимеры: общая характеристика

С точки зрения химии, полимером принято считать молекулу, имеющую огромную молекулярную массу: от нескольких тысяч до миллионов единиц. Однако, помимо этого признака, существует и еще несколько, по которым вещества можно классифицировать именно как природные и синтетические полимеры. Это:

  • постоянно повторяющиеся мономерные звенья, которые соединяются при помощи разных взаимодействий;
  • степень полимеразии (то есть число мономеров) должна быть очень высокой, иначе соединение будет считаться олигомером;
  • определенная пространственная ориентация макромолекулы;
  • набор важных физико-химических свойств, характерных только для данной группы.

В целом вещество полимерной природы отличить от других достаточно легко. Стоит лишь взглянуть на его формулу, чтобы понять это. Типичным примером может служить всем известный полиэтилен, широко применяемый в быту и промышленности. Он является продуктом в которую вступает этен или этилен. Реакция в общем виде записывается следующим образом:

nCH 2 =CH 2 →(-СН-СН-) n , где n - это степень полимеризации молекул, показывающая, сколько мономерных звеньев входит в ее состав.

Также в качестве примера можно привести природный полимер, который всем хорошо известен, это крахмал. Кроме того, к данной группе соединений принадлежат амилопектин, целлюлоза, куриный белок и многие другие вещества.

Реакции, в результате которых могут образоваться макромолекулы, бывают двух типов:

  • полимеризации;
  • поликонденсации.

Разница в том, что во втором случае продукты взаимодействия являются низкомолекулярными. Строение полимера может быть различным, это зависит от тех атомов, что его образуют. Часто встречаются линейные формы, но есть и трехмерные сетчатые, очень сложные.

Если же говорить о силах и взаимодействиях, которые удерживают мономерные звенья вместе, то можно обозначить несколько основных:

  • Ван-Дер-Ваальсовы силы;
  • химические связи (ковалентные, ионные);
  • электроностатическое взаимодействие.

Все полимеры нельзя объединять в одну категорию, так как они имеют совершенно различную природу, способ образования и выполняют неодинаковые функции. Свойства их также разнятся. Поэтому существует классификация, которая позволяет делить всех представителей этой группы веществ на разные категории. В ее основе может лежать несколько признаков.

Классификация полимеров

Если брать за основу качественный состав молекул, то все рассматриваемые вещества можно определить в три группы.

  1. Органические - это те, в состав которых входят атомы углерода, водорода, серы, кислорода, фосфора, азота. То есть те элементы, которые являются биогенными. Примеров можно привести массу: полиэтилен, поливинилхлорид, полипропилен, вискоза, нейлон, природный полимер - белок, нуклеиновые кислоты и так далее.
  2. Элементорганические - такие, в состав которых входит какой-то посторонний неорганический и не Чаще всего это кремний, алюминий или титан. Примеры подобных макромолекул: стеклополимеры, композиционные материалы.
  3. Неорганические - в основе цепи лежат атомы кремния, а не углерода. Радикалы же могут быть частью боковых ответвлений. Они открыты совсем недавно, в середине XX века. Используются в медицине, строительстве, технике и прочих отраслях. Примеры: силикон, киноварь.

Если разделять полимеры по происхождению, то можно выделить три их группы.

  1. Природные полимеры, применение которых широко осуществлялось с самой древности. Это такие макромолекулы, для создания которых человек не прилагал никаких усилий. Они являются продуктами реакций самой природы. Примеры: шелк, шерсть, белок, нуклеиновые кислоты, крахмал, целлюлоза, кожа, хлопок и прочие.
  2. Искусственные. Это такие макромолекулы, которые создаются человеком, но на основе природных аналогов. То есть просто улучшаются и изменяются свойства уже имеющегося природного полимера. Примеры: искусственный
  3. Синтетические - это такие полимеры, в создании которых участвует только человек. Природных аналогов для них нет. Ученые разрабатывают методы синтеза новых материалов, которые отличались бы улучшенными техническими характеристиками. Так рождаются синтетические полимерные соединения разного рода. Примеры: полиэтилен, полипропилен, вискоза, и прочее.

Есть и еще один признак, который лежит в основе разделения рассматриваемых веществ на группы. Это реакционная способность и термоустойчивость. Выделяют две категории по этому параметру:

  • термопластичные;
  • термореактивные.

Самым древним, важным и особенно ценным является все же природный полимер. Его свойства уникальны. Поэтому дальше рассмотрим именно эту категорию макромолекул.

Какое вещество является природным полимером?

Чтобы ответить на этот вопрос, сначала оглянемся вокруг себя. Что нас окружает? Живые организмы вокруг нас, которые питаются, дышат, размножаются, цветут и дают плоды и семена. А что они представляют собой с молекулярной точки зрения? Это такие соединения, как:

  • белки;
  • нуклеиновые кислоты;
  • полисахариды.

Так вот, природным полимером является каждое из приведенных соединений. Таким образом, выходит, что жизнь вокруг нас существует только благодаря наличию этих молекул. С самых древних времен люди использовали глину, строительные смеси и растворы для укрепления и создания жилища, ткали пряжу из шерсти, применяли для создания одежды хлопок, шелк, шерсть и кожу животных. Природные органические полимеры сопровождали человека на всех ступенях его становления и развития и во многом помогли ему добиться тех результатов, что мы имеем сегодня.

Сама природа давала все для того, чтобы жизнь людей была максимально комфортной. Со временем был открыт каучук, выяснены его замечательные свойства. Человек научился использовать в пищевых целях крахмал, в технических - целлюлозу. Природным полимером является и камфора, которая также известна с древних времен. Смолы, белки, нуклеиновые кислоты - все это примеры рассматриваемых соединений.

Строение природных полимеров

Не все представители данного класса веществ устроены одинаково. Так, природные и синтетические полимеры могут существенно различаться. Их молекулы ориентируется так, чтобы максимально выгодно и удобно существовать с энергетической точки зрения. При этом многие природные виды способны набухать и структура их в процессе меняется. Можно выделить несколько самых распространенных вариантов строения цепи:

  • линейные;
  • разветвленные;
  • звездчатые;
  • плоские;
  • сетчатые;
  • ленточные;
  • гребневидные.

Искусственные и синтетические представители макромолекул имеют очень большую массу, огромное число атомов. Их создают со специально заданными свойствами. Поэтому и строение их изначально планируется человеком. Натуральные же полимеры чаще всего либо линейные, либо сетчатые по своей структуре.

Примеры природных макромолекул

Природные и искусственные полимеры очень близки друг другу. Ведь первые становятся основой для создания вторых. Примеров подобных превращений много. Приведем некоторые из них.

  1. Обычная пластмасса молочно-белого цвета - это продукт, получаемый при обработке азотной кислотой целлюлозы с добавлением природной камфоры. Реакция полимеризации приводит к затвердеванию полученного полимера и превращению в нужный продукт. А пластификатор - камфора, делает его способным размягчаться при нагревании и менять свою форму.
  2. Ацетатный шелк, медно-аммиачное волокно, вискоза - все это примеры тех нитей, волокон, которые получают на основе целлюлозы. Ткани из натурального хлопка и льна не так прочны, не блестящи, легко сминаемы. А вот искусственные аналоги их этих недостатков лишены, что и делает их использование весьма привлекательным.
  3. Искусственные камни, строительные материалы, смеси, кожзаменители - это также примеры полимеров, полученных на основе натурального сырья.

Вещество, являющееся природным полимером, может использоваться и в истинном виде. Таких примеров тоже немало:

  • канифоль;
  • янтарь;
  • крахмал;
  • амилопектин;
  • целлюлоза;
  • шерсть;
  • хлопок;
  • шелк;
  • цемент;
  • глина;
  • известь;
  • белки;
  • нуклеиновые кислоты и так далее.

Очевидно, что рассматриваемый нами класс соединений очень многочисленный, практически важный и значимый для людей. Теперь рассмотрим более подробно несколько представителей природных полимеров, которые являются очень востребованными в настоящее время.

Шелк и шерсть

Формула природного полимера шелка сложна, ведь его химический состав выражается следующими компонентами:

  • фиброин;
  • серицин;
  • воски;
  • жиры.

Сам главный белок - фиброин, насчитывает в своем составе несколько разновидностей аминокислот. Если представить его полипептидную цепочку, то она будет выглядеть примерно так: (-NH-CH 2 -CO-NH-CH(CH 3)-CO-NH-CH 2 -CO-) n. И это лишь ее часть. Если представить, что к данной структуре при помощи сил Ван-Дер-Ваальса присоединяется не менее сложная молекула белка серицина, вместе они смешиваются в единую конформацию с воском и жирами, то понятно, почему сложно изобразить формулу натурального шелка.

На сегодняшний день большую часть данного продукта поставляет Китай, ведь на его просторах существует естественная среда обитания основного производителя - тутового шелкопряда. Раньше, начиная с самых древних времен, натуральный шелк очень ценился. Позволить себе одежду из него могли лишь знатные, богатые люди. Сегодня многие характеристики этой ткани оставляют желать лучшего. Например, он сильно намагничивается и мнется, кроме того, от пребывания на солнце теряет блеск и тускнеет. Поэтому больше в обиходе искусственные производные на его основе.

Шерсть - это тоже природный полимер, так как является продуктом жизнедеятельности кожи и сальных желез животных. На основе этого белкового продукта изготавливают трикотаж, который, как и шелк, является ценным материалом.

Крахмал

Природный полимер крахмал является продуктом жизнедеятельности растений. Они производят его в результате процесса фотосинтеза и накапливают в разных частях тела. Его химический состав:

  • амилопектин;
  • амилоза;
  • альфа-глюкоза.

Пространственная структура крахмала очень разветвленная, неупорядоченная. Благодаря входящему в состав амилопектину, он способен набухать в воде, превращаясь в так называемый клейстер. Этот используется в технике и промышленности. Медицина, пищевая отрасль, изготовление обойных клеев - это также области использования данного вещества.

Среди растений, содержащих максимальное количество крахмала, можно выделить:

  • кукурузу;
  • картофель;
  • пшеницу;
  • маниок;
  • овес;
  • гречиху;
  • бананы;
  • сорго.

На основе этого биополимера выпекают хлеб, изготавливают макаронные изделия, варят кисели, каши и прочие пищевые продукты.

Целлюлоза

С точки зрения химии, данное вещество - это полимер, состав которого выражается формулой (С 6 Н 5 О 5) n . Мономерным звеном цепи является бета-глюкоза. Основные места содержания целлюлозы - это клеточные стенки растений. Именно поэтому древесина - ценный источник этого соединения.

Целлюлоза - природный полимер, который имеет линейное пространственное строение. Она используется для производства следующих видов изделий:

  • целлюлозно-бумажной продукции;
  • искусственного меха;
  • разных видов искусственных волокон;
  • хлопка;
  • пластмассы;
  • бездымного пороха;
  • кинопленок и так далее.

Очевидно, что промышленное значение ее велико. Чтобы данное соединение возможно было использовать в производстве, его следует для начала извлечь из растений. Это делают путем длительной варки древесины в специальных устройствах. Дальнейшая обработка, а также реагенты, используемые для вываривания, различаются. Есть несколько способов:

  • сульфитный;
  • азотнокислый;
  • натронный;
  • сульфатный.

После подобной обработки продукт все еще содержит примеси. В основе это лигнин и гемицеллюлоза. Чтобы избавиться от них, массу обрабатывают хлором или щелочью.

В организме человека не существует таких биологических катализаторов, которые сумели бы расщепить этот сложный биополимер. Однако некоторые животные (травоядные) приспособились к этому. В их желудке поселяются определенные бактерии, которые делают это за них. Взамен микроорганизмы получают энергию для жизни и среду обитания. Такая форма симбиоза является крайне выгодной для обеих сторон.

Каучук

Это природный полимер, имеющий ценное хозяйственное значение. Впервые он был описан еще Робертом Куком, который в одном из своих путешествий его обнаружил. Произошло это так. Высадившись на острове, на котором жили неизвестные ему туземцы, он был гостеприимно встречен ими. Его внимание привлекли местные дети, которые играли необычным предметом. Это шарообразное тело отталкивалось от пола и подпрыгивало высоко вверх, затем возвращалось.

Поинтересовавшись у местного населения о том, из чего сделана эта игрушка, Кук узнал, что так застывает сок одного из деревьев - гевеи. Много позже было выяснено, что это и есть биополимер каучук.

Химическая природа данного соединения известна - это изопрен, подвергшийся естественной полимеризации. Формула каучука (С 5 Н 8) n . Его свойства, благодаря которым он так высоко ценится, следующие:

  • эластичность;
  • износостойкость;
  • электроизоляция;
  • водонепроницаемость.

Однако есть и недостатки. На холоде он становится хрупким и ломким, а на жаре - липким и тягучим. Именно поэтому появилась необходимость синтеза аналогов искусственной или синтетической основы. Сегодня каучуки широко используются в технических и промышленных целях. Самые главные продукты на их основе:

  • резины;
  • эбониты.

Янтарь

Является природным полимером, поскольку по своей структуре представляет смолу, ископаемую ее форму. Пространственная структура - каркасный аморфный полимер. Очень горюч, зажечь его можно пламенем спички. Обладает свойствами люминесценции. Это очень важное и ценное качество, которое используется в ювелирном деле. Украшения на основе янтаря очень красивы и востребованы.

Кроме того, этот биополимер используют и в медицинских целях. Из него же изготовляют наждачную бумагу, лаковые покрытия для различных поверхностей.

Полимеры – это органические и неорганические вещества, которые подразделяются на различный типы и виды. Что представляют из себя полимеры, и какова их классификация?

Общая характеристика полимеров

Полимерами называют высокомолекулярные вещества, молекулы которых состоят из повторяющихся структурных звеньев, связанных с друг другом химической связью. Полимеры могут быть органическими и неорганическими, аморфными или кристаллическими веществами. В полимерах всегда находится большое количество мономерных звеньев, если это количество слишком мало, то это уже не полимер, а олигомер. Количество звеньев считается достаточным, если при добавлении нового мономерного звена свойства не изменяются.

Рис. 1. Полимер структура.

Вещества, из которых получают полимеры, называются мономерами.

Молекулы полимеров могут иметь линейную, разветвленную или трехмерную структуру. Молекулярный вес обычных полимеров колеблется от 10000 до 1000000.

Реакция полимеризации характерна для многих органических веществ, в которых имеются двойные или тройные связи.

Например: реакция образования полиэтилена:

nCH 2 =CH 2 —> [-CH 2 -CH 2 -]n

где n – число молекул мономера, взаимно соединенных в процессе полимеризации, или степень полимеризации.

Полиэтилен получают при высокой температуре и высоком давлении. Полиэтилен химически устойчив, механически прочен и поэтому широко применяется при изготовлении оборудования в различных отраслях промышленности. Он обладает высокими электроизоляционными свойствами, а также используется в качестве упаковки продуктов.

Рис. 2. Вещество полиэтилен.

Структурные звенья – многократно повторяющиеся в макромолекуле группы атомов.

Виды полимеров

По своему происхождению полимеры можно разделить на три типа:

  • природные . Природные или натуральные полимеры можно встретить в природе в естественных условиях. К этой группе относятся, например, янтарь, шелк, каучук, крахмал.

Рис. 3. Каучук.

  • синтетические . Синтетические полимеры получают в лабораторных условиях, синтезирует их человек. К таким полимерам относятся ПВХ, полиэтилен, полипропилен, полиуретан. эти вещества не имеют ни какого отношения к природе.
  • искусственные . Искусственные полимеры отличаются от синтетических тем, что они синтезированы хоть и в лабораторных условиях, но на основе природных полимеров. К искусственным полимерам относится целлулоид, ацетатцеллюлоза, нитроцеллюлоза.

С точки зрения химической природы полимеры делятся на органические, неорганические и элементоорганические. Большая часть всех известных полимеров являются органическими. К ним относятся все синтетические полимеры. Основу веществ неорганической природы составляют такие элементы, как S, O, P, H и другие. Такие полимеры не бывают эластичными и не образуют макроцепей. Сюда относятся полисиланы, поликремниевые кислоты, полигерманы. К полимерам с элемнтоорганической природой относится смесь как органических, так и неорганических полимеров. Главная цепь – всегда неорганическая, боковые – органические. Примерами полимеров могут служить полисилоксаны, поликарбоксилаты, полиорганоциклофосфазены.

Все полимеры могут находится в разных агрегатных состояниях. Они могут быть жидкостями (смазки, лаки, клеи, краски), эластичными материалами (резина, силикон, поролон), а также твердыми пластмассами (полиэтилен, полипропилен).

Автор этой статьи академик Виктор Александрович Кабанов — выдающийся ученый в области химии высокомолекулярных соединений, ученик и преемник акадtvbrf В.А. Каргина, одного из мировых лидеров науки о полимерах, создателя крупной научной школы, автора большого количества работ, книг и учебных пособий.

Полимеры (от греч. polymeres — состоящий из многих частей, многообразный) — это химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация полимеров

По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы.

Атомы или атомные группы могут располагаться в макромолекуле в виде:

  • открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный);
  • цепи с разветвлением (разветвленные полимеры, например амилопектин);
  • трёхмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы).

Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например поливинилхлорид, поликапроамид, целлюлоза.

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определённой периодичности, полимеры называются стереорегулярными (см. Стереорегулярные полимеры).

Что такое сополимеры
Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми (см. также Сополимеры).

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

Гетероцепные и гомоцепные полимеры

В зависимости от состава основной (главной) цепи полимеры делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторэтилен. Примеры гетероцепных полимеров. — полиэфиры (полиэтилентерефталат, поликарбонаты и др.), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими (см. Элементоорганические полимеры). Отдельную группу полимеров. образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид (см. Неорганические полимеры).

Свойства и важнейшие характеристики полимеров

Линейные полимеры обладают специфическим комплексом и . Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и плёнки; способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластическом состоянии набухать перед растворением; высокая вязкость растворов (см. Растворы полимеров, Набухание). Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трёхмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах. возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов и др.), тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимеров менее выражены, чем в кристаллических.

Незакристаллизованные полимеры могут находиться в трёх физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластическое состояние называются эластомерами, с высокой — пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеров. могут меняться в очень широких пределах. Так, 1,4-цис-полибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 град.С — эластичный материал, который при температуре — 60 град.С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жёстких цепей, при температуре около 20 град.С — твёрдый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100 град.С.

Целлюлоза — полимер с очень жёсткими цепями, соединёнными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры её разложения. Большие различия в свойствах П. могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235 град.С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80 град.С.

Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (т. н. сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты (см. Деструкция полимеров); реакции боковых функциональных групп полимеров. с низкомолекулярными веществами, не затрагивающие основную цепь (т. н. полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливинилацетата, приводящее к образованию поливинилового спирта.

Скорость реакций полимеров. с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимеров. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

Некоторые свойства полимеров., например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимеры из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

Важнейшие характеристики полимеров — химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвлённости и гибкости макромолекул, стереорегулярность и др. Свойства полимеров. существенно зависят от этих характеристик.

Получение полимеров

Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и др. методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углерод-углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных). Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углерод-элемент (например, С = О, С º N, N = С = О) или непрочные гетероциклические группировки (например, в окисях олефинов, лактамах).

Применение полимеров

Благодаря механической прочности, эластичности, электроизоляционным и др. ценным свойствам изделия из полимеров применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов — пластические массы, резины, волокна (см. Волокна текстильные, Волокна химические), лаки, краски, клеи, ионообменные смолы. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

Историческая справка. Термин «полимерия» был введён в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о., содержание термина не соответствовало современным представлениям о полимерах. «Истинные» синтетические полимеры к тому времени ещё не были известны.

Ряд полимеров был, по-видимому, получен ещё в 1-й половине 19 в. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к «осмолению» продуктов основной химической реакции, т. е., собственно, к образованию полимера. (до сих пор полимеры часто называли «смолами»). Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол).

Химия полимеров возникла только в связи с созданием А. М. Бутлеровым теории химического строения (начало 60-х гг. 19 в.). А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее своё развитие (до конца 20-х гг. 20 в.) наука о полимерах получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г. Бушарда, У. Тилден, нем. учёный К. Гарриес, И. Л. Кондаков, С. В. Лебедев и др.). В 30-х гг. было доказано существование свободнорадикального (Г. Штаудингер и др.) и ионного (американский учёный Ф. Уитмор и др.) механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса.

С начала 20-х гг. 20 в. развиваются также теоретические представления о строении полимеров. Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория «малых блоков»). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г. Штаудингер. Победа идей этого учёного (к началу 40-х гг. 20 в.) заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

Литература .: Энциклопедия полимеров, т. 1-2, М., 1972-74; Стрепихеев А. А., Деревицкая В. А., Слонимский Г. Л., Основы химии высокомолекулярных соединений, 2 изд., [М., 1967]; Лосев И. П., Тростянская Е. Б., Химия синтетических полимеров, 2 изд., М., 1964; Коршак В. В., Общие методы синтеза высокомолекулярных соединений, М., 1953; Каргин В. А., Слонимский Г. Л., Краткие очерки по физике-химии полимеров, 2 изд., М., 1967; Оудиан Дж., Основы химии полимеров, пер. с англ., М., 1974; Тагер А. А., Физико-химия полимеров, 2 изд., М., 1968; Тенфорд Ч., Физическая химия полимеров, пер. с англ., М., 1965.

В. А. Кабанов. Источник www.rubricon.ru

Представьте следующую ситуацию. Вы выходите из магазина и торопитесь поскорее закинуть пакет в машину. Дело сделано. Вы быстро проверяете телефон и садитесь за руль. Заходя в свою квартиру, вы вытираете ноги о резиновый коврик, вынимаете все из пакетов: сковородку с антипригарным покрытием, игрушки для ребенка, пену для бритья, пару рубашек, обои. Вроде ничего не забыли. Вы прихватываете с собой бутылку воды и идете к компьютеру - пора бы и поработать. Все, о чем шла речь выше, содержит полимеры. Вплоть до магазина.

Полимеры - что это такое?

Полимеры - это материалы, состоящие из длинных повторяющихся цепочек молекул. Они обладают уникальными свойствами в зависимости от типа соединяемых молекул и от того, как они соединены. Некоторые из них гнутся и тянутся, например резина и полиэстер. Другие твердые и жесткие, как эпоксиды и органическое стекло.

Термин «полимер» обычно используется для описания пластиков, которые являются синтетическими полимерами. Как бы то ни было, естественные полимеры также существуют: к примеру, резина и дерево - это естественные полимеры, состоящие из простого углеводорода, изопрена. Белки - тоже естественные полимеры, они состоят из аминокислот. Нуклеиновые кислоты (ДНК и РНК) - полимеры нуклеотидов - сложных молекул, состоящих из азотсодержащей основы, сахара и фосфорной кислоты.

Кто до этого додумался?

Отцом полимеров считается преподаватель органической химии из Швейцарской высшей технической школы Цюриха Герман Штаудингер.

Герман Штаудингер. Источник: Wikimedia

Его исследования 1920-х гг. проложили путь для последующей работы, как с естественными, так и с синтетическими полимерами. Он ввел два термина, являющихся ключевыми для понимания полимеров: полимеризация и макромолекула. В 1953 г. Штаудингер получил заслуженную Нобелевскую премию «за его открытия в поле макромолекулярной химии».

Полимеризация - метод создания синтетических полимеров путем комбинирования более маленьких молекул, мономеров, в цепочку, скрепляемую ковалентными связями. Различные химические реакции, например те, что вызваны теплом и давлением, изменяют химические связи, которые скрепляют мономеры. Процесс заставляет молекулы связываться в линейной, разветвленной или пространственной структуре, превращая их в полимеры. Эти цепочки мономеров также называют макромолекулами. Одна макромолекула может состоять из сотен тысяч мономеров.

Виды полимеров

Вид полимера зависит от его структуры. Из вышенаписанного мы понимаем, что таких видов должно быть три.

Линейные полимеры. Это соединения, в которых мономеры химически инертны по отношению друг к другу и связаны лишь силами Ван-дер-Ваальса (силы межмолекулярного (и межатомного) взаимодействия с энергией 10–20 кДж/моль. - Прим. ред .). Термин «линейные» вовсе не обозначает прямолинейное расположение молекул относительно друг друга. Наоборот, для них более характерна зубчатая или спиральная конфигурация, что придает таким полимерам механическую прочность.

Разветвленные полимеры. Они образованы цепями с боковыми ответвлениями (число ответвлений и их длина различны). Разветвленные полимеры более прочны, чем линейные.

Линейные и разветвленные полимеры размягчаются при нагревании и вновь затвердевают при охлаждении. Такое их свойство называется термопластичностью, а сами полимеры - термопластичными, или термопластами. Связи между молекулами в таких полимерах могут быть разорваны и соединены по новой. Это значит, что пластмассовые бутылки можно использовать для производства других полимерсодержащих вещей, от коврика до флисовых курток. Конечно, можно наделать еще бутылок. Все, что понадобится для переработки, - высокая температура. Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под действием реагентов. К термопластам относятся поливинилхлорид, полиэтилен, полистирол и др.

Если же макромолекулы содержат реакционно-способные мономеры, то при нагревании они соединяются множеством поперечных связей, и полимер приобретает пространственную структуру. Такие полимеры называют термоактивными, или реактопластами.

С одной стороны, реактопласты обладают положительными качествами: они более твердые и теплостойкие. С другой стороны, после разрушения связей между молекулами термоактивных полимеров ее не получится установить второй раз. Переработка в таком случае отпадает, а это очень нехорошо. Самые распространенные полимеры этой группы - полиэстер, винилэстер и эпоксиды.