Сколько раз делится человеческая клетка. Лимит хейфлика и клеточные основы старения. Подходы к классификации теорий старения

Леонард Хейфлик обнаружил границу числа делений соматических клеток, которая составляет примерно 50-52 деления.

«Есть два типа человеческих клеток: половые, то есть женская яйцеклетка и сперма мужчин, и соматические, включающие порядка сотни триллионов других клеток, составляющих остальное тело. Все клетки размножаются делением.

В 1961 году Леонард Хейфлик открыл, что у соматических клеток есть верхний предел общего числа делений, и число возможных делений уменьшается с возрастом клетки. Существует не одна теория, объясняющая, почему существует этот так называемый предел Хейфлика.

В основе главной из них лежит накопление случайных повреждений гена при репликации клетки. При каждом клеточном делении действуют факторы среды, например, дым, радиация, химикаты, известные под названием свободных гидроксильных радикалов, и продукты распада клеток, которые мешают точному воспроизведению ДНК в следующем поколении клетки. В организме существует много ферментов восстановления ДНК, которые следят за процессом копирования и устраняют неполадки транскрипции по мере их возникновения, но все ошибки они отловить не в состоянии. При неоднократной репликации клетки повреждения ДНК накапливаются, приводя к неверному синтезу белков и неправильному функционированию. Эти ошибки функционирования являются, в свою очередь, причиной болезней, характерных для старения, например, артериосклероза, заболеваний сердца и злокачественных опухолей.

Ещё одна теория утверждает, что барьер Хейфлика связан с теломерами, то есть некодирующими участками ДНК, присоединенными к концу каждой хромосомы. Теломеры действуют как лидеры кинопленки, обеспечивая точную репликацию ДНК. В процессе деления клетки происходит расплетание двух нитей ДНК и создание новых полных копий этой молекулы в дочерних клетках. Но при каждом делении клетки теломеры становятся чуть короче, и в итоге они уже не в состоянии защитить концы нитей ДНК; тогда клетка, сочтя короткие теломеры за поврежденные ДНК, прекращает рост. У овечки Долли, клонированной из соматической клетки взрослого животного, оказались укороченные теломеры взрослого организма, а не теломеры новорождённого ягнёнка, и, возможно, она не проживёт столь же долго, сколь её нормально рожденные братья и сестры.

Есть три основных типа клеток, для которых не существует лимита Хейфлика: половые клетки, раковые клетки и некоторые типы стволовых клеток.

Причина, из-за которой эти клетки способны к бесконечному размножению, связана с наличием фермента теломеразы, впервые выделенного в 1989 году - этот фермент препятствует укорочению теломер. Вот что позволяет клеткам зародышевого пути продолжаться через поколения, и вот что лежит в основе взрывного роста раковых опухолей».

Фрэнсис Фукуяма , Наше постчеловеческое будущее: последствия биотехнологической революции, М., «Аст», 2004 г., с. 89-90.

Кратко и по простому это звучит так: Даже если человека минуют болезни и несчастные случаи, его клетки со временем перестанут делиться, будут разрушаться и в конце концов умрут. Это явление известно как предел Хейфлика. Исследования показывают, что в настоящее время максимальная продолжительность жизни составляет около 125 лет.

А вот более подробно на эту тему…

Леонард Хейфлик обнаружил границу числа делений соматических клеток, которая составляет примерно 50-52 деления.

«Есть два типа человеческих клеток: половые, то есть женская яйцеклетка и сперма мужчин, и соматические, включающие порядка сотни триллионов других клеток, составляющих остальное тело. Все клетки размножаются делением.

В 1961 году Леонард Хейфлик открыл, что у соматических клеток есть верхний предел общего числа делений, и число возможных делений уменьшается с возрастом клетки. Существует не одна теория, объясняющая, почему существует этот так называемый предел Хейфлика.

Принципиально, эксперимент проведённый Леонардом Хейфликом в коллаборации с Полом Мурхедом, был довольно простым: смешивали равные части нормальных мужских и женских фибробластов, различавшихся по количеству пройденных клеточных делений (мужские - 40 делений, женские - 10 делений) для того, чтобы фибробласты можно было отличить друг от друга в дальнейшем. Параллельно был поставлен контроль с мужскими 40-дневными фибробластами. Когда же контрольная несмешанная популяция мужских клеток перестала делиться, то смешанная опытная культура содержала только женские клетки, ведь все мужские клетки уже погибли. На основании этого Хейфлик сделал вывод, что нормальные клетки имеют ограниченную способность к делению в отличие от раковых клеток, которые иммортальны. Так было выдвинуто предположение, что так называемые «митотические часы» находятся внутри каждой клетки, на основании следующих наблюдений:

1. Нормальные фетальные фибробласты человека в культуре способны удваивать популяцию только ограниченное количество раз;
2. Клетки, которые подверглись криогенной обработке, «помнят», сколько раз они делились до заморозки.

В основе главной из них лежит накопление случайных повреждений гена при репликации клетки. При каждом клеточном делении действуют факторы среды, например, дым, радиация, химикаты, известные под названием свободных гидроксильных радикалов, и продукты распада клеток, которые мешают точному воспроизведению ДНК в следующем поколении клетки. В организме существует много ферментов восстановления ДНК, которые следят за процессом копирования и устраняют неполадки транскрипции по мере их возникновения, но все ошибки они отловить не в состоянии. При неоднократной репликации клетки повреждения ДНК накапливаются, приводя к неверному синтезу белков и неправильному функционированию. Эти ошибки функционирования являются, в свою очередь, причиной болезней, характерных для старения, например, артериосклероза, заболеваний сердца и злокачественных опухолей.

Ещё одна теория утверждает, что барьер Хейфлика связан с теломерами, то есть некодирующими участками ДНК, присоединенными к концу каждой хромосомы. Теломеры действуют как лидеры кинопленки, обеспечивая точную репликацию ДНК. В процессе деления клетки происходит расплетание двух нитей ДНК и создание новых полных копий этой молекулы в дочерних клетках. Но при каждом делении клетки теломеры становятся чуть короче, и в итоге они уже не в состоянии защитить концы нитей ДНК; тогда клетка, сочтя короткие теломеры за поврежденные ДНК, прекращает рост. У овечки Долли, клонированной из соматической клетки взрослого животного, оказались укороченные теломеры взрослого организма, а не теломеры новорождённого ягнёнка, и, возможно, она не проживёт столь же долго, сколь её нормально рожденные братья и сестры.

Есть три основных типа клеток, для которых не существует лимита Хейфлика: половые клетки, раковые клетки и некоторые типы стволовых клеток.

Причина, из-за которой эти клетки способны к бесконечному размножению, связана с наличием фермента теломеразы, впервые выделенного в 1989 году — этот фермент препятствует укорочению теломер. Вот что позволяет клеткам зародышевого пути продолжаться через поколения, и вот что лежит в основе взрывного роста раковых опухолей».


источники
Фрэнсис Фукуяма , Наше постчеловеческое будущее: последствия биотехнологической революции, М., «Аст», 2004 г., с. 89-90.

Это копия статьи, находящейся по адресу

Человек имеют необычайно долгую продолжительность жизни по сравнению с большинством жизней на Земле, особенно млекопитающими соответствующего размера. Хотя было предложено много теорий относительно того, почему это так, все еще продолжаются некоторые дискуссии относительно того, что определяет продолжительность жизни различных видов.

Самым старым человеком в истории – насколько сегодня известно, была 122-летняя француженка по имени Жанна, которая умерла в 1997 году. Однако люди, прожившие 100 лет или дольше, сегодня уже не представляются необычным явлением.

Сейчас мы воспринимаем это как весьма обычное дело, но важно помнить, что всего два столетия назад ожидаемая продолжительность жизни человека была намного меньше. Широко распространено мнение, что глобальная продолжительность жизни в 1900 году составляла всего 31 год. Благодаря быстрому развитию медицинских знаний в 20-м веке, а также глобализации таких знаний в обширных районах мира, продолжительность жизни во всем мире увеличилась примерно до 72 лет в 2014 году.

Это означает, что в течение сотен тысяч лет, когда развивался как вид, у него, вероятно, была продолжительность жизни не более 25-30 лет. Вы можете сравнить это с продолжительностью жизни шимпанзе, которая в среднем составляет 40-50 лет в дикой природе, и 50-60 лет в неволе, или горилл, которые живут примерно 40 лет.

Учитывая, насколько тесно мы связаны с человекообразными обезьянами – разделяя примерно 99% той же , что и шимпанзе и гориллы, – можно понять нашу довольно впечатляющую современную продолжительность жизни.

Хотя средняя продолжительность жизни по всему земному шару постоянно возрастала в течение прошлого столетия, существует вопрос о том, существует ли ограничение на человеческую жизнь, или же благодаря постоянному прогрессу в медицине средняя продолжительность жизни увеличиться с 72 до 100 лет.

Почему люди живут так долго по сравнению с большинством других видов?
Как упомянуто выше, точный механизм определения продолжительности жизни существа горячо обсуждается, но некоторые из самых сильных претендентов на объяснение включают общий расход энергии и верхний предел числа циклов деления клеток.

Расход энергии
По сравнению с большинством других видов, людям и обезьянам требуется много времени для достижения зрелости. Например, новорожденные антилопы могут бегать спустя 90 минут после рождения, тогда как люди часто не ходят до достижения возраста 1 года.

Некоторые виды землеройки, такие как же млекопитающие, как и люди, живут менее года и часто умирают в течение нескольких недель после рождения своего единственного потомства. С другой стороны, люди не достигают половой зрелости в течение по крайней мере первого десятилетия, и средний возраст женщин, родивших первого ребенка в странах мира, варьируется от 18 до 31 года.

Все это говорит о том, что другие виды развиваются, созревают и размножаются гораздо быстрее, и, следовательно, требуют гораздо более высокого потребления энергии, потому что их расход энергии намного выше. Упомянутые выше землеройки каждый день съедают насекомых общим весом почти с них самих, потому что их метаболизм невероятно быстр, а сердце бьется более 600 раз в минуту!

То есть другие виды развиваются и размножаются быстрее, достигая зрелости в течение 1-2 лет и размножаются настолько часто, насколько это возможно в течение их жизнеспособного периода размножения.

Люди и другие приматы совершенно противоположны этому, и скорость их метаболизма относительно ниже – примерно в два раза меньше, чем у других млекопитающих. Клеточное дыхание и расход энергии приводят к более быстрому истощению организма и его систем, а более низкий уровень метаболизма может продлить жизнь на десятилетия.

Клеточные деления
Другим потенциальным объяснением является встроенное ограничение количества раз, которое клеточная популяция может делиться, прежде чем стать стареющей, то есть неспособной делиться дальше.

Этот предел называется пределом Хейфлика, и для клеток человека он составляет приблизительно 52 цикла деления. Этот предел истечения срока деления клеток, похоже, намекает на естественную точку отсечения для человеческой жизни, и сохраняется для других животных.

Виды с заведомо короткой продолжительностью жизни, такие как мыши (2-3 года), имеют предел Хейфлика в 15 делений, в то время как животные с даже более длинной продолжительностью жизни, чем люди, имеют более высокий предел Хейфлика (например, морские черепахи, с ожидаемой продолжительностью жизни более двух столетий), имеют предел Хейфлика приблизительно 110.

По мере старения клеток их теломеры – участки ДНК на концах хромосом, уменьшаются в длине, что в конечном итоге делает невозможным дальнейшее точное деление клеток. человека проявляют признаки старения при приближении к этой границе и умирают приблизительно после 52 делений.

У ряда других простых видов был найден ген, который эффективно ограничивает продолжительность жизни, активируя другие гены, которые контролируют все, от транскрипции и продукции белка до репродуктивных триггеров. Было обнаружено, что, когда этот единственный ген мутировал у определенных дождевых червей, их продолжительность жизни могла удвоиться.

Предел Хейфлика. Среднестатистическая клетка делится около 50-70 раз прежде, чем умирает. По мере деления клетки теломеры на конце хромосомы становятся меньше.
© CC BY-SA 4.0, Azmistowski17

Этот ген, по-видимому, является ранним предшественником гена, который контролирует выработку инсулина у людей, который также может работать в качестве механизма контроля для ингибирования и активации других генов. Эти открытия являются захватывающими, поскольку они могут намекнуть на основополагающую генетическую схему жизни организма. Для исследователей, ищущих «источник молодости» или «бессмертие», эти границы исследований особенно интересны.

Исключения из правила
Хотя у людей есть потенциал жить в течение столетия или даже более, мы ни в коем случае не являемся самым долгоживущим организмом на планете. Известно, что гигантские черепахи, найденные на Галапагосских островах, живут более 150 лет, в то время как старейшему образцу Гренландской акулы более 400 лет. Что касается беспозвоночных, есть некоторые виды моллюсков, которые вообще могут жить более пяти веков!

Да, довольно примечательно, что ожидаемая продолжительность жизни человека более чем удвоилась в течение всего лишь одного столетия, но исходя из того, что мы знаем до сих пор, существует средняя граница того, как долго мы можем жить, если не найдем способ генетического продления жизни.

По мере того, как клетки и ткани стареют и накапливают больше ошибок в своем генетическом коде, организм начинает разрушаться, болезни становятся все более вероятными, а способность к лечению затрудняется. Относится к этому нужно спокойно, потому что как мы все знаем, жизнь прекрасна и непредсказуема, поэтому лучше всего жить, пока у нас есть такая возможность!

Предел или лимит Хейфлика – теория, объясняющая природу механизма, стоящего за старением клеток. Согласно этой теории, нормальная человеческая клетка способна воспроизводить себя и делиться от сорока до шестидесяти раз, прежде чем она утратит эту способность и разрушится в результате запрограммированной смерти или апоптоза.

Теория, получившая название предела Хейфлика, подвигла учёных к пересмотру предшествовавшей ей теории Алексиса Карреля, согласно которой клетки способны бесконечно воспроизводить себя.

История создания теории Хейфлика

Леонард Хейфлик (родился 20 мая 1928 в Филадельфии), профессор анатомии Калифорнийского университета в Сан-Франциско, разработал свою теорию в тот период, когда работал в Вистаровском институте в Филадельфии (Пенсильвания), в 1965. Фрэнк Макфарлейн Бёрнет назвал эту теорию в честь Хейфлика в своей книге под названием «Внутренний мутагенез», изданной в 1974. Концепция предела Хейфлика помогла учёным изучить эффекты старения клеток в человеческом организме, развитие клетки от стадии эмбриона до момента смерти, включая эффект сокращения длины концевых участков хромосом, именуемых теломерами.

В 1961 Хейфлик начал работать в институте Вистара, где в ходе наблюдений увидел, что человеческие клетки не делятся бесконечно. Хейфлик и Пол Мурхед описали этот феномен в монографии под названием «Серийное культивирование штаммов диплоидных клеток человека». Работа Хейфлика в Вистаровском институте преследовала цель обеспечить питательным раствором учёных, проводивших в институте эксперименты, но при этом Хейфлик занимался собственными исследованиями эффектов вирусов в клетках. В 1965 Хейфлик более детальным образом изложил концепцию предела Хейфлика в монографии под названием «Ограниченная продолжительность жизни штаммов диплоидных клеток человека в искусственной среде».

Хейфлик пришёл к заключению, согласно которому клетка способна завершить митоз, т. е. процесс воспроизводства посредством деления, лишь от сорока до шестидесяти раз, после чего наступает смерть. Данное заключение относилось ко всем разновидностям клеток, будь то взрослые или зародышевые клетки. Хейфлик выдвинул гипотезу, согласно которой минимальная репликативная способность клетки связана с её старением и, соответственно, с процессом старения человеческого организма.

В 1974 Хейфлик стал одним из основателей Национального института проблем старения в Вифезде, в Мэриленде.

Это заведение является отделением Национального института здоровья США. В 1982 Хейфлик также стал вице-председателем американского Общества геронтологии, основанного в 1945 в Нью-Йорке. В дальнейшем Хейфлик работал над популяризацией своей теории и опровержением теории клеточного бессмертия Карреля.

Опровержение теории Карреля

Алексис Каррель, французский хирург, который в начале двадцатого века работал с тканями куриного сердца, считал, что клетки способны бесконечно воспроизводиться путём деления. Каррель утверждал, что ему удалось добиться деления клеток куриного сердца в питательной среде – этот процесс продолжался в течение более двадцати лет. Его эксперименты с тканью куриного сердца укрепили теорию бесконечного деления клеток. Учёные не раз пытались повторить работу Карреля, но их эксперименты так и не подтвердили «открытие» Карреля.

Критика теории Хейфлика

В 1990-ых годах некоторые учёные, такие как Гарри Рубин из Калифорнийского университета в Беркли, заявили, что предел Хейфлика относится исключительно к повреждённым клеткам. Рубин предположил, что повреждения клеток могут быть вызваны тем, что клетки находятся в среде, отличной от их изначальной среды в теле, или тем, что учёные подвергали клетки воздействию в лабораторных условиях.

Дальнейшие исследования феномена старения

Невзирая на критику, другие учёные использовали теорию Хейфлика как основу дальнейших исследований феномена клеточного старения, особенно теломеров, представляющих собой концевые участки хромосом. Теломеры защищают хромосомы и уменьшают мутации в ДНК. В 1973 российский учёный А. Оловников применил теорию клеточной смерти Хейфлика в своих исследованиях концов хромосом, не воспроизводящих себя во время митоза. По мнению Оловникова, процесс деления клеток завершается, как только клетка уже не может воспроизводить концы своих хромосом.

Годом позже, в 1974, Бёрнет назвал теорию Хейфлика пределом Хейфлика, употребив это название в своей работе, «Внутренний мутагенез». В центре работы Бёрнета стояло предположение о том, что старение является внутренним фактором, присущим клеткам разных форм жизни, и что их жизнедеятельность соответствует теории, известной под названием предел Хейфлика, устанавливающей время смерти организма.

Элизабет Блэкбёрн из университета Сан-Франциско и её коллега Джек Шостак, сотрудник Гарвардской медицинской школы в Бостоне, в Массачусетсе, обратились к теории предела Хейфлика в своих исследованиях структуры теломеров в 1982, когда им удалось клонировать и изолировать теломеры.

В 1989 Грейдер и Блэкбёрн сделали следующий шаг в изучение феномена старения клеток, открыв фермент под названием теломераза (фермент группы трансфераз, контролирующий размер, количество и нуклеотидный состав теломер хромосом). Грейдер и Блэкбёрн установили, что присутствие теломераз помогает клеткам тела избежать программированной смерти.

В 2009 Блэкбёрн, Д. Шостак и К. Грейдер получили Нобелевскую премию в сфере физиологии и медицине с формулировкой «за открытие механизмов защиты хромосом теломерами и фермента теломеразы». Их исследования были основаны на пределе Хейфлика.

Статья на конкурс «био/мол/текст»: Уже более 50 лет прошло с тех пор, как на культуре фибробластов доказан феномен старения клеток, но существование старых клеток в организме долгое время подвергалось сомнению. Не было доказательств, что старение отдельных клеток играет важную роль в старении всего организма . В последние годы были открыты молекулярные механизмы старения клеток, их связь с онкологическими заболеваниями и воспалением. По современным представлениям, воспаление играет ведущую роль в генезе практически всех возраст-зависимых заболеваний, которые в конечном итоге приводят организм к смертельному исходу. Оказалось, что старые клетки, с одной стороны, выступают в качестве супрессоров опухолей (поскольку необратимо перестают делиться сами и снижают риск трансформации окружающих клеток), а с другой - специфический метаболизм старых клеток может вызывать воспаление и перерождение соседних предраковых клеток в злокачественные. В настоящее время проходят клинические испытания лекарственных препаратов, избирательно элиминирующих старые клетки в органах и тканях, тем самым предотвращая дегенеративные изменения органов и рак.

В организме человека присутствует примерно 300 типов клеток, и все они делятся на две большие группы: одни могут делиться и размножаться (то есть, они митотически компетентны ), а другие - постмитотические - не делятся: это достигшие крайней стадии дифференцировки нейроны, кардиомиоциты, зернистые лейкоциты и другие.

В нашем организме существуют обновляющиеся ткани, в которых есть пул постоянно делящихся клеток, которые заменяют отработанные или погибающие клетки. Такие клетки есть в криптах кишечника, в базальном слое эпителия кожи, в костном мозге (кроветворные клетки). Обновление клеток может происходить довольно интенсивно: так, клетки соединительной ткани в поджелудочной железе заменяются каждые 24 часа, клетки слизистой желудка - каждые три дня, лейкоциты - каждые 10 дней, клетки кожи - каждые шесть недель, примерно 70 г пролиферирующих клеток тонкого кишечника удаляется из организма ежедневно .

Стволовые клетки, существующие практически во всех органах и тканях, способны делиться неограниченно. Регенерация тканей происходит за счет пролиферации стволовых клеток, которые могут не только делиться, но и дифференцироваться в клетки той ткани, регенерация которой происходит. Стволовые клетки есть в миокарде, в головном мозге (в гипокампе и в обонятельных луковицах) и в других тканях. Это открывает большие надежды в плане лечения нейродегенеративных заболеваний и инфаркта миокарда .

Постоянно обновляющиеся ткани способствуют увеличению продолжительности жизни. При делении клеток происходит омоложение тканей: новые клетки приходят на место поврежденных, при этом интенсивнее происходит репарация (устранение повреждений ДНК) и возможна регенерация при повреждении тканей. Не удивительно, что у позвоночных значительно выше продолжительность жизни, чем у беспозвоночных - тех же насекомых, у которых во взрослом состоянии клетки не делятся.

Но в то же время обновляющиеся ткани подвержены гиперпролиферации, что ведет к образованию опухолей, в том числе - злокачественных. Это происходит из-за нарушений регуляции деления клеток и повышенной частоты мутагенеза в активно делящихся клетках. По современным представлениям, чтобы клетка приобрела свойство злокачественности, ей необходимо 4–6 мутаций . Мутации возникают редко, и для того, чтобы клетка стала раковой - это подсчитано для фибробластов человека - должно произойти около 100 делений (такое число делений обычно происходит у человека примерно в возрасте 40 лет) .

Стоит, в прочем, помнить, что мутация мутации рознь, и согласно новейшим геномным исследованиям в каждом поколении человек приобретает около 60 новых мутаций (которых не было в ДНК у его родителей). Очевидно, что большая часть из них вполне нейтральная (см. «Перевалило за тысячу: третья фаза геномики человека »). - Ред.

В целях защиты от самого себя, в организме сформировались специальные клеточные механизмы супрессии опухолей . Один из них - репликативное старение клеток (сенесценция ), заключающееся в необратимой остановке деления клетки в стадии G1 клеточного цикла . При старении клетка перестает делиться: она не реагирует на ростовые факторы и становится устойчивой к апоптозу.

Лимит Хейфлика

Феномен старения клеток был впервые открыт в 1961 г. Леонардом Хейфликом с коллегами на культуре фибробластов. Оказалось, что клетки в культуре фибробластов человека при хороших условиях живут ограниченное время и способны удваиваться примерно 50±10 раз, - и это число стали называть лимитом Хейфлика , . До открытия Хейфлика господствовала точка зрения, что клетки бессмертны, а старение и смерть - это свойство организма в целом.

Эта концепция считалась неопровержимой во многом благодаря экспериментам Карреля, который поддерживал культуру клеток сердца цыпленка 34 года (ее выбросили лишь после его смерти). Однако, как выяснилось впоследствии, бессмертие культуры Карреля было артефактом, поскольку вместе с эмбриональной сывороткой, которая добавлялась в культуральную среду для роста клеток, туда попадали и сами эмбриональные клетки (и, скорее всего, культура Карреля стала уже далеко не тем, чем была в начале).

По-настоящему бессмертными являются раковые клетки. Так, клетки HeLa , выделенные в 1951 г. из опухоли шейки матки Генриетты Лакс , до сих пор используются цитологами (в частности, c помощью клеток HeLa была разработана вакцина против полиомиелита). Эти клетки даже побывали в космосе.

О захватывающей истории бессмертия Генриетты Лакс см. в статье «Бессмертные клетки Генриетты Лакс », а также «Наследники клеток HeLa ». - Ред.

Как выяснилось, лимит Хейфлика зависит от возраста: чем старше человек, тем меньшее число раз удваиваются его клетки в культуре. Интересно, что замороженные клетки при разморозке и последующем культивировании как будто помнят число делений до замораживания. Фактически, внутри клетки существует «счетчик делений», и по достижении определенного предела (лимита Хейфлика) клетка перестает делиться - становится сенесцентной. Сенесцентные (старые) клетки имеют специфическую морфологию - они крупные, уплощенные, с большими ядрами, сильно вакуолизированы, у них меняется профиль экспрессии генов. В большинстве случаев они устойчивы к апоптозу.

Однако старение организма нельзя свести только к старению клеток. Это значительно более сложный процесс. Старые клетки есть и в молодом организме, но их мало! Когда же с возрастом сенесцентные клетки накапливаются в тканях, начинаются дегенеративные процессы, которые приводят к возраст-зависимым заболеваниям. Один из факторов этих заболеваний - так называемое старческое «стерильное» воспаление , которое связано с экспрессией провоспалительных цитокинов старыми клетками.

Еще один важный фактор биологического старения - строение хромосом и их кончиков - теломеров.

Теломерная теория старения

Рисунок 1. Теломеры - концевые участки хромосом. Поскольку хромосом у человека 23 пары (то есть, 46 штук), теломер получается 92.

В 1971 году наш соотечественник Алексей Матвеевич Оловников предположил, что лимит Хейфлика связан с «недорепликацией» концевых участков линейных хромосом (они имеют специальное название - теломеры ). Дело в том, что в каждом цикле деления клетки теломеры укорачиваются из-за неспособности ДНК-полимеразы синтезировать копию ДНК с самого кончика , . Кроме того, Оловников предсказал существование теломеразы (фермента, добавляющего повторяющиеся последовательности ДНК на концы хромосом), исходя из того факта, что иначе в активно делящихся клетках ДНК быстро бы «съелась», и генетический материал был бы утерян. (Проблема в том, что активность теломеразы угасает в большинстве дифференцированных клеток.)

Теломеры (рис. 1) играют важную роль: они стабилизируют кончики хромосом, которые иначе, как говорят цитогенетики, стали бы «липкими», т.е. подверженными разнообразным хромосомным аберрациям, что приводит к деградации генетического материала. Теломеры состоят из повторяющихся (1000–2000 раз) последовательностей (5′-TTAGGG-3′), что в сумме дает 10–15 тысяч нуклеотидных пар на каждый хромосомный кончик. На 3′-конце теломеры имеют довольно длинный однонитевой участок ДНК (150–200 нуклеотидов), участвующий в образовании петли по типу лассо , (рис. 2). С теломерами связано несколько белков, образующих защитный «колпачок» - этот комплекс называется шелтерином (рис. 3). Шелтерин предохраняет теломеры от действия нуклеаз и слипания и, видимо, именно он сохраняет целостность хромосомы.

Рисунок 2. Состав и структура теломер. Многократное деление клетки в случае отсутствия активности теломеразы ведет к укорочению теломер и репликативному старению .

Рисунок 3. Строение теломерного комплекса (шелтерина ). Теломеры находятся на концах хромосом и состоят из тандемных повторов TTAGGG, которые заканчиваются 32-членным выступающим одноцепочечным фрагментом. С теломерной ДНК связан шелтерин - комплекс из шести белков: TRF1, TRF2, RAP1, TIN2, TPP1 и POT1.

Незащищенные концы хромосом воспринимаются клеткой как повреждение генетического материала, что активирует репарацию ДНК . Теломерный комплекс вместе с шелтерином «стабилизирует» хромосомные кончики, защищая всю хромосому от разрушения. В сенесцентных клетках критическое укорочение теломер нарушает эту защитную функцию , в связи с чем начинают формироваться хромосомные аберрации, которые часто приводят к малигнизации. Чтобы этого не произошло, специальные молекулярные механизмы блокируют клеточное деление, и клетка переходит в состояние сенесцентности - необратимой остановки клеточного цикла. При этом клетка гарантированно не может размножаться, а значит, не сможет и сформировать опухоль. В клетках с нарушенной способностью к сенесценции (которые размножаются, несмотря на дисфункцию теломер), образуются хромосомные аберрации.

Длина теломер и скорость их укорочения зависит от возраста. У человека длина теломер варьирует от 15 тысяч нуклеотидных пар (т.н.п.) при рождении до 5 т.н.п. при хронических заболеваниях. Длина теломер максимальна у 18-месячных детей, а затем она быстро снижается до 12 т.н.п. к пятилетнему возрасту. После этого скорость укорачивания снижается .

Теломеры укорачиваются у разных людей с разной скоростью. Так, на эту скорость сильно влияют стрессы. Э. Блекберн (лауреат Нобелевской премии по физиологии и медицине 2009 г.) установлено, что женщины, постоянно испытывающие стресс (например, матери хронически больных детей), имеют значительно более короткие теломеры по сравнению со сверстницами (примерно на десять лет!). Лабораторией Э. Блекберн разработан коммерческий тест для определения «биологического возраста» людей на основании длины теломер.

Любопытно, что у мышей очень длинные теломеры (50–40 т.н.п., по сравнению с 10–15 т.н.п. у человека). У некоторых линий лабораторных мышей длина теломер достигает 150 т.н.п. Более того, у мышей теломераза всегда активна, что не дает теломерам укорачиваться. Однако это, как всем известно, не делает мышей бессмертными. Мало того: у них опухоли развиваются намного чаще, чем у людей, что позволяет предположить, что укорачивание теломер как механизм защиты от опухолей у мышей не работает .

При сравнении длины теломер и теломеразной активности у разных млекопитающих оказалось, что виды, для которых характерно репликативное старение клеток, имеют большую продолжительность жизни и большой вес. Это, например, киты, продолжительность жизни которых может достигать 200 лет. Таким организмам репликативное старение просто необходимо, поскольку слишком большое число делений порождает множество мутаций, с которыми необходимо как-то бороться. Предположительно, репликативное старение и есть такой механизм борьбы, который сопровождается к тому же репрессией теломеразы .

Старение диференцированных клеток происходит иначе. Стареют и нейроны, и кардиомиоциты, а ведь они не делятся! Например, в них накапливается липофусцин - старческий пигмент, который нарушает функционирование клеток и запускает апоптоз. В клетках печени и селезенки с возрастом накапливается жир.

Связь репликативного старения клеток со старением организма, строго говоря, не доказана, но возрастная патология сопровождается и старением клеток (рис. 4). Злокачественные новообразования пожилого возраста в большинстве своем связаны с обновляемыми тканями. Онкологические заболевания в развитых странах - одна из основных причин заболеваемости и смертности, причем независимым фактором риска раковых заболеваний является просто... возраст. Число смертей от опухолевых заболеваний увеличивается с возрастом по экспоненте, так же как и общая смертность. Это говорит нам, что между старением и канцерогенезом существует фундаментальная связь.

Рисунок 4. Гистохимически окрашенные на наличие β-галактозидазной активности фибробласты человека линии WI-38. A - молодые; B - старые (сенесцентные).

Теломераза - фермент, который был предсказан

В организме должен существовать механизм, компенсирующий укорочение теломер, - такое предположение сделал А.М. Оловников . Действительно, в 1984 г. такой фермент был открыт Кэрол Грейдер и назван теломеразой . Теломераза (рис. 5) - это обратная транскриптаза, которая увеличивает длину теломер, компенсируя их недорепликацию. В 2009 году Э. Блэкберн, К. Грэйдер и Д. Шостак за открытие этого фермента и цикл работ по изучению теломер и теломеразы была присуждена Нобелевская премия (см: «„Нестареющая“ Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе » ).

Рисунок 5. Теломераза содержит каталитический компонент (обратную транскриптазу ТERT), теломеразную РНК (hTR или TERC), содержащую две копии теломерного повтора и являющуюся матрицей для синтеза теломеров, и белок дискерин.

По данным Э. Блекберн, теломераза участвует в регуляции активности примерно 70 генов. Теломераза активна в зародышевых и эмбриональных тканях, в стволовых и пролиферирующих клетках. Ее обнаруживают в 90% раковых опухолей, что обеспечивает неудержимое размножение раковых клеток. В настоящее время среди препаратов, которые используют для лечения рака, есть и ингибитор теломеразы. Но в большинстве соматических клеток взрослого организма теломераза не активна.

В состояние сенесценции клетку могут привести многие стимулы - дисфункция теломер, повреждения ДНК, причиной которых могут быть мутагенные воздействия окружающей среды, эндогенные процессы, сильные митогенные сигналы (сверхэкспрессия онкогенов Ras, Raf, Mek, Mos, E2F-1 и др.), нарушения хроматина, стрессы и др. Фактически, клетки перестают делиться - становятся сенесцентными - в ответ на потенциально вызывающие рак события.

Страж генома

Дисфункция теломер, которая происходит при их укорачивании либо нарушении работы шелтерина, активирует белок р53 . Этот транскрипционный фактор приводит клетку в состояние сенесценции, либо вызывает апоптоз . При отсутствии р53 развивается нестабильность хромосом, характерная для карцином человека. Мутации в белке р53 обнаруживаются в 50% аденокарцином груди и в 40–60% случаев колоректальной аденокарциномы. Поэтому p53 зачастую называют «стражем генома».

Теломераза реактивируется в большинстве опухолей эпителиального происхождения, которые характерны для пожилых людей. Считается, что реактивация теломеразы - важный этап злокачественных процессов, поскольку это позволяет раковым клеткам «не обращать внимания» на лимит Хейфлика. Дисфункция теломер способствует хромосомным слияниям и аберрациям, что в отсутствии p53 чаще всего приводит к злокачественным новообразованиям.

О молекулярных механизмах старения клеток

Рисунок 6. Схема клеточного цикла. Клеточный цикл подразделяют на четыре стадии: 1. G1 (предсинтетическая) - период, когда клетка готовится к репликации ДНК. В этой стадии может произойти остановка клеточного цикла в случае обнаружения повреждений ДНК (на время репарации). Если обнаруживаются ошибки в репликации ДНК, и они не могут быть исправлены репарацией, клетка не переходит на стадию S. 2. S (cинтетическая) - когда происходит репликация ДНК. 3. G2 (постсинтетическая) - подготовка клетки к митозу, когда происходит проверка точности репликации ДНК; если обнаружены недореплицированные фрагменты или другие нарушения в синтезе, переход на следующую стадию (митоз) не происходит. 4. М (митоз) - формирование клеточного веретена, сегрегация (расхождение хромосом) и формирование двух дочерних клеток (собственно деление).

Чтобы были понятны молекулярные механизмы перехода клетки в состояние сенесцентности, я напомню вам, как происходит деление клетки.

Процесс размножения клеток называют пролиферацией . Время существования клетки от деления до деления именуют клеточным циклом . Процесс пролиферации регулируется как самой клеткой - аутокринными ростовыми факторами, - так и ее микроокружением - паракринными сигналами.

Активация пролиферации происходит через клеточную мембрану, в которой присутствуют рецепторы, воспринимающие митогенные сигналы - это в основном ростовые факторы и межклеточные контактные сигналы. Ростовые факторы обычно имеют пептидную природу (к настоящему времени их известно около 100). Это, например, фактор роста тромбоцитов, который участвует в тромбообразовании и заживлении ран, эпителиальный фактор роста, различные цитокины - интерлейкины, фактор некроза опухолей, колониестимулирующие факторы и т.д. После активации пролиферации клетка выходит из фазы покоя G0 и начинается клеточный цикл (рис. 6).

Клеточный цикл регулируется циклин-зависимыми киназами , разными для каждой стадии клеточного цикла. Они активируются циклинами и инактивируются рядом ингибиторов. Цель такой сложной регуляции - обеспечить синтез ДНК с как можно меньшим числом ошибок, чтобы и дочерние клетки имели абсолютно идентичный наследственный материал. Проверка правильности копирования ДНК осуществляется в четырех «контрольных точках» цикла: если обнаруживаются ошибки, то клеточный цикл останавливается, и включается репарация ДНК . Если нарушения структуры ДНК удается исправить - клеточный цикл продолжается. Если нет - клетке лучше «покончить с собой» (путем апоптоза), чтобы избежать вероятности превращения в раковую.

Молекулярные механизмы, приводящие к необратимой остановке клеточного цикла, контролируются генами-супрессорами опухолей, среди которых p53 и pRB, связанные с ингибиторами циклин-зависимых киназ. Супрессию клеточного цикла в фазе G1 осуществляет белок p53, действующий через ингибитор циклин-зависимой киназы р21. Транскрипционный фактор р53 активируется при повреждениях ДНК, и функция его заключается в удалении из пула реплицирующихся клеток тех, которые являются потенциально онкогенными (отсюда и прозвище р53 - «страж генома»). Данное представление подтверждается тем фактом, что мутации р53 обнаруживают в ~50% случаев злокачественных опохолей. Другое проявление активности р53 связано с апоптозом наиболее поврежденных клеток.

Сенесценция клеток и возраст-зависимые заболевания

Рисунок 7. Взаимосвязь между старением клеток и старением организма.

Сенесцентные клетки накапливаются с возрастом и способствуют возрастным заболеваниям. Они снижают пролиферативный потенциал ткани и истощают пул стволовых клеток, что приводит к дегенеративным нарушениям ткани и снижает способность к регенерации и обновлению.

Сенесцентные клетки характеризуются специфической экспрессией генов: они секретируют воспалительные цитокины и металлопротеиназы, разрушающие межклеточный матрикс. Получается, что старые клетки обеспечивают вялотекущее старческое воспаление, а накопление старых фибробластов в коже служит причиной возрастного снижения способности к заживлению ран (рис. 7). Старые клетки также стимулируют пролиферацию и малигнизацию близлежащих предраковых клеток, благодаря секреции эпителиального фактора роста .

Сенесцентные клетки накапливаются во многих тканях человека, присутствуют в атеросклеротических бляшках, в язвах кожи, в пораженных артритом суставах, а также в доброкачественных и пренеопластических гиперпролиферативных поражениях простаты и печени. При облучении раковых опухолей некоторые клетки также переходят в состояние сенесценции, тем самым обеспечивая рецидивы заболевания.

Таким образом, клеточное старение демонстрирует эффект отрицательной плейотропии, суть которого состоит в том, что хорошее для молодого организма, может стать плохим для старого. Самый яркий пример - процессы воспаления. Выраженная реакция воспаления способствует быстрому выздоровлению молодого организма при инфекционных заболеваниях. В пожилом же возрасте активные воспалительные процессы приводят к возрастным заболеваниям. Сейчас принято считать, что воспаление играет определяющую роль практически при всех возраст-зависимых заболеваниях, начиная с нейродегенеративных.