Основные принципы культивирования микроорганизмов. Основные принципы и методы культивирования бактерий. Питательные среды и их классификация. Колонии у различных видов бактерий, культуральные свойства. Приготовление питательных сред

В лабораторных условиях микроорганизмы выращивают на питательных средах, которые должны быть стерильными, прозрачными, влажными, содержать определенные питательные вещества (белки, углеводы, витамины, микроэлементы и др.), обладать определенной буферностью, иметь соответствующий рН, окислительно-восстановительный потенциал. Питательные среды классифицируют по консистенции — жидкие, полужидкие, плотные (твердые); происхождению — животного или растительного происхождения и синтетические среды, приготовленные из определенных химически чистых соединений в точно указанных концентрациях; по назначению — общеупотребительные (универсальные), дифференциальные, элективные и среды обогащения, специальные.

Обычные (простые) среды пригодны для культивирования многих видов патогенных и непатогенных бактерий. К ним относятся мясо-пептонный бульон (МПБ), мясо-пептонный агар (МПА), мясо-пептонный желатин (МПЖ). Мясо-пептонный агар готовят из мясо-пептонного бульона путем добавления 1—2 % фабричного агара, который придает питательной среде при охлаждении консистенцию плотного студня. Получают агар из некоторых водорослей.

Дифференциальные среды позволяют различать бактерии разных видов и родов по их культуральным и биохимическим свойствам. К ним относятся мясо-пептонный желатин, среды Гисса, Эндо, кровяной агар, бактоагар Плоскирева (бактоагар Ж) и др.

Элективные (избирательные) среды и среды обогащения, благоприятствующие размножению бактерий определенных видов и подавляющие рост других микробов. К ним относятся яичные среды Петраньяни, Гельберга для выращивания микобактерий туберкулеза, среды Дюба — Смита в модификации А. П. Аликаевой для выращивания возбудителя паратуберкулеза и др.

Специальные среды — наиболее оптимальные для выращивания бактерий, не размножающихся на общеупотребительных средах. К ним относятся кровяной агар, сывороточный агар, сывороточный бульон, среда Китта — Тароцци (МГШБ), среда Сабуро и др.

На плотных питательных средах микробы образуют различные по форме и величине колонии, которые представляют собой видимые скопления особей одного вида микроорганизмов, образующихся в результате размножения из одной или нескольких клеток.

Колонии характеризуются величиной — крупные (до 4 мм), средние (2—4 мм), мелкие (1—2 мм); формой круглая, эллипсовидная, пузырьковидная, ветвистая (она может изменяться в зависимости от условий питания и других влияний окружающей среды); поверхностью — блестящая, матовая, неровная, морщинистая, складчатая, мозговидная, гладкая, исчерченная; прозрачностью — прозрачные, мутные, опалесцирующие; консистенцией — слизистая, вязкая, крошковатая, мучнистая, рогоподобная; краями — ровные, изрезанные, бахромчатые, неровные, дольчатые, локонообразные, бухтообразные, изъеденные, расплывчатые; профилем или рельефом — плоский, приподнятый, выпуклый, вдавленный, куполообразный; структурой — однородные (гомогенные), зернистые; пигментом — нет, есть, какого цвета; запахом — отсутствует, резкий, что напоминает. Изучение ведут макроскопически (величина, форма, цвет, прозрачность) и микроскопически (строение и края колонии).

У культур, выращенных на жидких питательных средах, изучают поверхностный рост (пристеночное кольцо, пленка, хлопья, их характер); помутнение — слабое, умеренное, сильное, стойкое, проходящее; осадок — плотный, хлопчатый, зернистый, в виде клочка ваты; количество его — обильное, скудное; цвет I

Особенности размножения различных микроорганизмов. Дли культивирования спирохет простейших применяют питательные среды, содержащие нативные белки (сыворотка, кровь), кусочки свежих органов и тканей (почки кролика, мозговая ткань кур), синтетические питательные среды, состоящие из определенных аминокислот.

Для культивирования патогенных грибов, как правило, применяют элективные среды слабокислой или кислой реакции (рН 6,8—4,5). Элективность достигается подбором питательных веществ и добавлением к средам антибиотиков или красителей для подавления роста бактериальной флоры. Оптимальная температура культивирования 30—33 "С. Широко используют плотные среды Сабуро, пивное сусло-агар и др. Из жидких сред хорошо зарекомендовали себя сахарный бульон, пивное сусло, среда Чапека — Докса, рН 6—6,8.

Микоплазмы в силу своих структурных особенностей слабо адаптируются на питательных средах. Одни штаммы вызывают помутнение среды, другие — образуют легкую пленку; одни — растут в верхнем слое питательной среды, другие — в придонной части. На плотных питательных средах микоплазмы формируют характерные колонии, напоминающие яичницу-глазунью. При этом в первичных посевах рост начинается на 3—7-е сут, адаптированные же штаммы растут значительно быстрее.

Синтез микробных пигментов, фосфоресцирующих и ароматобразующих веществ. Микроорганизмы в процессе жизнедеятельности синтезируют красящие вещества — пигменты, придающие колониям бактериальных культур разнообразный цвет и оттенки, что учитывается при дифференциации микроорганизмов. Различают красные пигменты (актиномицеты, дрожжи, грибы, «чудесная палочка» — Bact. prodigiosum), желтые или оранжевые (микобактерий туберкулеза, сарцины, стафилококки), синие (синегнойная палочка — Pseudomonos aeruginosa, бактерия синего молока — Bact. syncyaneum), фиолетовые (Chromobacterium violaceum), черные (некоторые виды грибов, дрожжей, почвенных микробов). Образование пигментов происходит в присутствии кислорода при комнатной температуре и пониженном освещении. Микроорганизмы, развиваясь на пищевых продуктах (молоко, сыр, мясо, рыба, масло, творог), изменяют их цвет.

Различают пигменты, растворимые в воде (синегнойная бактерия, бактерии сине-зеленого молока — пиоцианин, синцианин), в спирте (пигменты «чудесной» бактерии, стафилококков и сарцин — красный, золотистый, лимонно-желтый и желтый), не растворимые ни в воде, ни в спирте (черные пигменты дрожжей, грибов, азотобактера), выделяющиеся в окружающую среду (хромонарные), остающиеся в теле микроорганизмов (хромофорные).

Физиологическое значение пигментов в жизнедеятельности микроорганизмов до конца не изучено. Точно установлено, что пигментобразующие микроорганизмы более резистентны к действию физико-химических и биологических факторов.

Светящиеся микроорганизмы (фотобактерии) вследствие окислительных процессов в бактериальной клетке обладают способностью свечения (люминесценции). Фотобактерии являются строгими аэробами, при прекращении доступа кислорода свечение у них приостанавливается. Наблюдаемое в природе свечение гнилушек, старых деревьев, мяса, чешуи рыбы, светящиеся термиты, муравьи, пауки, другие предметы и объекты объясняются наличием в них фотобактерий. Среди них встречаются кокки, вибрионы, некоторые грибы и бактерии. Они хорошо развиваются на обычных питательных средах, на рыбных и мясных субстратах при температуре от 15 до 37 °С. Типичным представителем фотобактерий является Photobacterium phosphoreum. Патогенных фотобактерий не найдено.

Ароматобразующие микробы обладают способностью вырабатывать летучие ароматические вещества, например уксусноэтиловый и уксусноамиловый эфиры, которые придают ароматические свойства винам, пиву, молочнокислым продуктам, сену, почве и т. д. Типичным представителем ароматобразующих бактерий является Leuconostoc cremoris, который широко используют при выработке молочнокислых продуктов.

Культивирование микроорганизмов - это один из основных приемов в микробиологии. Для роста и развития микроорганизмов в природе и в лабораторных условиях необходимо наличие питательных веществ для энергетических и конструктивных реакций. Требования разных групп микроорганизмов к источникам энергии и химическим элементам определяются их метаболическими возможностями. Выращивание и поддержание микробных культур в лаборатории основано на моделировании естественных условий обитания данного организма в лаборатории, а также на знании особенностей обмена веществ.

Основными биогенными элементами являются углерод, азот, фосфор, кислород, водород, сера. Это компоненты белков, углеводов и жиров, а также нуклеиновых кислот. Эти элементы требуются в значительных количествах (г/л) и поэтому их называют макроэлементами. К макроэлементам также относятся ионы калия, магния, натрия, кальция и железа. Они выполняют в клетке разнообразные функции. Например, К + необходим для активности большого числа ферментов и в частности ферментов белкового синтеза. Са 2+ определяет устойчивость бактериальных эндоспор к нагреванию. Mg 2+ стабилизирует рибосомы, многие ферменты и клеточные мембраны. Fe 2+ и Fe 3+ являются частью цитохромов и кофакторами электронпереносящих белков.

Микроэлементы, необходимые в микромолярных количествах, - это ионы таких металлов, как хром, кобальт, медь, молибден, марганец, никель, селен, вольфрам, ванадий, цинк, обычно входящие в состав ферментов и кофакторов. Например, Со 2+ является компонентом витамина В 12 , Cu 2+ входит в состав цитохромоксидазы и купредоксинов, Mn 2+ активирует ферменты, катализирующие перенос фосфатных групп, Мо 2+ входит в состав нитрогеназы и нитратредуктазы, Ni 2+ является компонентом уреазы, гидрогеназы, кофактора F 430 , Zn 2+ входит в состав карбоангидразы, ДНК- и РНК-полимераз и т.д. Необходимые для микроорганизмов количества микроэлементов содержатся в обычной водопроводной воде. При работе на дистиллированной воде микроэлементы добавляют специально в виде растворов их минеральных солей. Некоторые группы микроорганизмов проявляют специфические потребности. Так, диатомовые водоросли, включающие в свои клеточные стенки значительные количества соединений кремния, требуют добавления их в среду в высокой концентрации.

Биогенные элементы должны присутствовать в питательной среде в доступной для микроорганизмов форме. Как правило, ионы металлов, сера, фосфор и микроэлементы добавляют в среду в виде минеральных солей. Минеральная основа среды (минеральный фон) практически одинакова для большинства микроорганизмов.

Источники углерода и азота в среде могут быть как неорганическими соединениями (СО 2 , N 2 , карбонаты, нитриты, нитраты, аммонийные соли), так и органическими веществами разной степени сложности и окисленности (сахара, спирты, органические кислоты и аминокислоты, олигосахариды, пептиды и т.д.). Если микроорганизму требуется набор источников углерода или азота, и тогда применяют различные экстракты и гидролизаты смеси белков и полисахаридов неопределенного состава (сусло, гидролизат молочного белка, пептон и др.).

Как правило, лабораторные среды содержат питательные вещества в более высоких концентрациях, чем это присуще природным местообитаниям. Для разных микроорганизмов границы значений физико-химических факторов, в которых может происходить рост, существенно отличаются. Поэтому важным условием успешного культивирования является поддержание оптимальных значений таких параметров, как рН, температура, освещенность, аэрация и т.д.

2. Типы сред и способы культивирования микроорганизмов

Разнообразные питательные среды, используемые в микробиологической практике для культивирования микроорганизмов, подразделяются по составу, физическому состоянию и назначению.

По составу среды делятся на натуральные и синтетические. Синтетические среды применяют для изучения обмена веществ у микроорганизмов. Они имеют определенный химический состав с точным указанием концентрации каждого соединения. Натуральные среды применяют для накопления биомассы микроорганизмов и широко используют для первичного выделения из естественных субстратов, поскольку их состав позволяет удовлетворить питательные потребности многих групп микроорганизмов. В них содержатся богатые различными органическими веществами продукты животного или растительного происхождения, имеющие сложный и непостоянный состав. Часто натуральные среды готовят на основе мясо-пептонного бульона (МПБ) и солодового сусла. МПБ - это прокипяченный экстракт мясного фарша с добавлением пептона и поваренной соли. Он богат азотсодержащими органическими соединениями, но обеднен углеводами. Солодовое сусло, напротив, содержит преимущественно углеводы. Его получают путем настаивания размолотого солода в водопроводной воде при постепенном нагревании. Солодом называют пророщенные и высушенные зерна ячменя. В процессе приготовления сусла происходит гидролиз крахмала ячменя и экстракция сахаров в воду. В зависимости от партии зерна концентрация сахаров в сусле может быть разной. Ее выражают в градусах Баллинга (о Б), что примерно соответствуют процентному содержанию сахаров в растворе. Сусло с разной концентрацией сахаров применяют для выращивания разных групп микроорганизмов.

Жидкие среды представляют собой растворы или суспензии ингредиентов в воде. В качестве сыпучих сред применяют наборы длительно хранящихся сухих компонентов, которые перед работой растворяют или смачивают водой. Это могут быть зерно, отруби, твердые отходы сельского хозяйства и пищевой промышленности. В настоящее время получили широкое распространение порошкообразные синтетические и натуральные среды. Для получения твердых сред в жидкую основу добавляют уплотняющие агенты. Наиболее известными отвердителями являются желатин, агар и силикагель. Желатин - это белок из соединительной ткани животных, образующий гель при 25 о С. Неудобство его применения заключается в том, что температура роста многих микроорганизмов выше, чем температура плавления желатина. Наличие протеолитических ферментов у многих микроорганизмов приводит к расщеплению и разжижению желатина. Более удобен как уплотнитель сложный полисахарид агар, получаемый из морских бурых водорослей, так как большинство микроорганизмов не использует его для питания. Агар может многократно плавиться при 100 о С и застывать при 45 о С. Добавлением 2% агара в жидкую основу получают широко применяемые мясо-пептонный агар (МПА), сусло-агар (СА) и бульон-сусло-агар (БСА). В качестве твердой основы для синтетических сред часто используют неорганическое соединение кремния силикагель.

По назначению среды подразделяются на универсальные, элективные и индикаторные. Универсальные среды используют для накопления микробных клеток и первоначального выявления видового разнообразия микроорганизмов в смешанных популяциях. Они позволяют поддерживать рост значительного числа микроорганизмов. В то же время следует помнить, что не существует одной среды, универсальной для всех микробных культур. Элективные среды используют для получения накопительных культур как первого этапа при выделении чистой культуры из природных местообитаний. Создание условий, благоприятных для определенной группы микроорганизмов (элективных условий), приводит к преобладанию в смешанной популяции желаемых микроорганизмов. Рост и размножение других микроорганизмов в этих условиях не значительны. Для быстрого выявления определенных групп микроорганизмов или особенностей их метаболизма применяют индикаторные среды, содержащие вещество-индикатор, реагирующий изменением цвета на проявление какого-либо свойства организма. Индикаторные среды наиболее часто используют в санитарной и медицинской микробиологии.

3. Способы культивирования микроорганизмов

Особенности роста микроорганизма (культуральные свойства) иногда служат одним из критериев при определении его систематического положения. Микробные клетки в зависимости от условий могут расти в виде суспензии, микроколоний или обрастаний в жидких средах и образовывать колонии, штрихи или газон на твердых средах. Глубинные колонии формируются в толще агаризованных сред в виде чечевичек, тонких пленок или пучков ваты. Из-за выделения газов микроорганизмами при глубинном росте могут наблюдаться разрывы агаризованной среды. Поверхностные колонии отличаются большим разнообразием формы, размера, цвета, профиля. Колония может быть прозрачной, плотной, мягкой, хрупкой, врастать в агар, сниматься целиком в виде пленки, тянуться за петлей и т.д. Ее поверхность может быть блестящей или матовой, гладкой или шероховатой, иметь различные выпуклости, исчерченность и т.д. Различия в форме края и структуре колоний можно увидеть при малом увеличении микроскопа. Морфология колоний может значительно изменяться в зависимости от состава среды, возраста культуры и температуры культивирования. При посеве штрихом (прямой линией по агару) рост бывает обильный или скудный, сплошной или в виде цепочек очень мелких колоний, перистый, древовидный с различной формой края. При развитии культуры в жидких средах развитие микроорганизма может приводить к окрашиванию среды и появлению запаха, образованию пены и пузырьков, появлению помутнения, пленки на поверхности среды или осадка на дне сосуда.

Различают два основных способа культивирования микроорганизмов - периодическое и непрерывное. При периодическом культивировании клетки помещают в закрытый сосуд определенного объема, содержащий питательную среду, и задают начальные условия. Постепенно увеличивается плотность популяции, снижается концентрация питательных веществ и накапливаются продукты обмена, т.е. условия существования микроорганизмов изменяются. Периодическую культуру обычно рассматривают как замкнутую систему, переживающую разные фазы развития. Каждая фаза характеризуется определенными физиологическими параметрами. Лаг-фаза - это фаза «привыкания» клеток к среде, при этом происходит увеличение количества ДНК и РНК и индукция синтеза соответствующих ферментов. Лаг-фаза удлиняется, если брать старый посевной материал и переносить клетки в совершенно новую по составу среду. Лаг-фаза сокращается (или может совсем отсутствовать), если активные молодые клетки перенести в свежую среду того же состава и той же температуры. На средах, содержащих смесь субстратов, наблюдается диауксия, при которой после исчерпания одного субстрата культура переходит во вторую лаг-фазу для подготовки к потреблению другого субстрата. В экспоненциальной (логарифмической) фазе клетки растут и делятся с максимальной скоростью, их рост не ограничен. Обычно такие клетки используют в биохимических и физиологических исследованиях. По мере исчерпания субстратов и накопления продуктов обмена скорость роста снижается (фаза замедления роста) и культура переходит в стационарную фазу, в течение которой процессы деления и отмирания клеток в популяции находятся в динамическом равновесии. Для бактерий эта фаза достигается при концентрации в среднем 10 9 клеток/мл, для водорослей и простейших - 10 6 клеток/мл. Когда исчерпание питательных веществ и накопление продуктов метаболизма преодолеют некие пороговые концентрации, начинается фаза отмирания и число клеток в популяции постепенно снижается.

Непрерывное (проточное) культивирование позволяет зафиксировать культуру в какой-то определенной фазе (обычно экспоненциальной). При этом состав среды и условия роста остаются постоянными. Этого добиваются постоянным прибавлением новой питательной среды в сосуд для выращивания и одновременным удалением такого же количества среды с клетками. Простейшая схема организации протока представлена на рис. 45. Подача свежей среды и удаление части суспензии (проток) происходит с той же скоростью, с какой растет культура. В этом случае устанавливается динамическое равновесие.

Некоторые микроорганизмы способны к пребыванию в особом физиологическом состоянии, при котором живые клетки не дают колоний на пригодных для них лабораторных средах, но под микроскопом наблюдаются как живые. Такое некультивируемое состояние (некультивируемая форма) присуще ряду микроорганизмов в природных местообитаниях, например, возбудителям сальмонеллеза и холеры, находящимся вне организма человека. Механизм перехода в некультивируемую форму и обратно не изучен, но есть данные о том, что этот процесс запрограммирован в геноме микроорганизмов и запускается недостатком питательных веществ в природных эконишах. В природных образцах такие микроорганизмы изучают путем прямого наблюдения и с помощью методов молекулярного анализа состава нуклеиновых кислот образца.

4. Смешанные и чистые культуры микроорганизмов. Накопительные культуры. Способы получения чистых культур

Из-за малых размеров микроорганизмов работа в лаборатории проводится не с одной особью, а с популяцией организмов, или культурой. Культура микроорганизмов, состоящая из клеток одного вида, носит название чистой культуры. Если число видов два или больше, то говорят о смешанной культуре. Для определения систематического положения, физиолого-биохимических свойств и особенностей развития микроорганизмов необходимо получить чистую культуру. Для этого клетки данного вида нужно отделить от клеток других видов и впоследствии исключить возможность попадания посторонних микроорганизмов. При выделении чистой культуры из природных местообитаний, где микроорганизмы в большинстве случаев растут в виде смешанных популяций, на первом этапе обычно пользуются предложенным С.Н.Виноградским методом получения накопительных культур, в которых преобладают организмы определенной группы. Накопление желаемых микроорганизмов происходит за счет создания элективных условий культивирования, благоприятных для данной группы. Для этого нужно учитывать физиолого-биохимические особенности выделяемой культуры. Избирательного подавления роста определенных групп микроорганизмов можно достичь внесением в среду антибиотиков. Преобладать будет та группа микроорганизмов, для которой созданные исследователем условия культивирования наиболее приемлемы. Другие организмы, также присутствующие в пробе, в этих условиях не размножаются, либо характеризуются незначительным ростом. Например, для получения накопительной культуры азотфиксирующих микроорганизмов следует приготовить среду без связанных форм азота. Для замедления развития грамположительных бактерий можно добавить пенициллин, а мицелиальных грибов - нистатин или гризеофульвин. Для накопления спорообразующих микробов часто используют кратковременное прогревание пробы при высокой температуре (10 мин при 80 о С), когда вегетативные клетки погибают, а эндоспоры сохраняют свою жизнеспособность. Необходимо учитывать, что элективные условия - не всегда наилучшие (оптимальные) для роста выделяемой группы, однако сопутствующие микроорганизмы переносят их еще хуже. О получении накопительной культуры судят по характерной микроскопической картине, внешним изменениям среды, появлению определенных продуктов метаболизма.Чистую культуру в дальнейшем можно получить из единичной клетки или из отдельной колонии. Клетку извлекают микропипеткой или микропетлей под микроскопическим контролем и переносят в сосуд со средой. Другим способом является изготовление серии препаратов «висячая капля» из сильно разведенной суспензии. Препараты просматривают под микроскопом и выбирают те, где присутствует одна клетка. Затем их помещают во влажную камеру и микроскопируют вновь через сутки. Капли, в которых произошло размножение клеток, переносят в питательную среду. Чаще используют метод выделения чистой культуры из отдельной колонии, разработанный в лаборатории Р.Коха. Каплю накопительной культуры или ее разведения распределяют по поверхности или в глубине твердой питательной среды, добиваясь разобщения отдельных клеток. Каждая такая клетка впоследствии размножается, образуя колонию из клеток одного вида. Ее снимают петлей и переносят в сосуд с питательной средой. Признаком чистоты культуры является однородность колоний при пересевах и морфологическая однородность клеток при просмотре микроскопических препаратов.

Метаболизм микроорганизмов.

Для роста и размножения микроорганизмы нуждаются в веществах, используемых для построения структурных компонентов клетки и получения энергии. Метаболизм (т. е. обмен веществ и энергии) имеет две составляющих - анаболизм и катаболизм . Анаболизм - синтез компонентов клетки (конструктивный обмен ). Катаболизм - энергетический обмен, связан с окислительно - восстановительными реакциями, расщеплением глюкозы и других органических соединений, синтезом АТФ. Питательные вещества могут поступать в клетку в растворимом виде (это характерно для прокариот) - осмотрофы , или в виде отдельных частиц - фаготрофы .

Основным регулятором поступления веществ в бактериальную клетку является цитоплазматическая мембрана. Существует четыре основных механизма поступления веществ: - пассивная диффузия - по градиенту концентрации, энергонезатратная, не имеющая субстратной специфичности;

- облегченная диффузия - по градиенту концентрации, субстратспецифичная, энергонезатратная, осуществляется при участии специализированных белков пермеаз ;

- активный транспорт - против градиента концентрации, субстратспецифичен (специальные связывающие белки в комплексе с пермеазами), энергозатратный (за счет АТФ), вещества поступают в клетку в химически неизмененном виде;

- транслокация (перенос групп) - против градиента концентрации, с помощью фосфотрансферазной системы, энергозатратна, вещества (преимущественно сахара) поступают в клетку в форфорилированном виде.

Основные химические элементы - органогены , необходимые для синтеза органичеких соединений - углерод, азот, водород, кислород.

В зависимости от источника потребляемого углерода микробы подразделяют на аутотрофы (используют CO2) и гетеротрофы (используют готовые органические соединения). В зависимости от источника энергии микроорганизмы делят на фототрофы (энергию получают за счет фотосинтеза - например, цианобактерии) и хемотрофы (энергия добывается за счет химических, окислительно-восстановительных реакций). Если при этом донорами электронов являются неорганические соединения, то это литотрофы , если органические - органотрофы . Если бактериальная клетка в состоянии синтезировать все необходимые для жизнедеятельности вещества, то это прототрофы . Если бактерии нуждаются в дополнительных веществах (факторах роста), то это ауксотрофы. Основными факторами роста для труднокультивируемых бактерий являются пуриновые и пиримидиновые основания, витамины, некоторые (обычно незаменимые) аминокислоты, кровяные факторы (гемин) и др.

Дыхание микроорганизмов.

Путем дыхания микроорганизмы добывают энергию. Дыхание - биологический процесс переноса электронов через дыхательную цепь от доноров к акцепторам с образованием АТФ. В зависимости от того, что является конечным акцептором электронов, выделяют аэробное и анаэробное дыхание. При аэробном дыхании конечным акцептором электронов является молекулярный кислород (О 2), при анаэробном - связанный кислород (-NO 3 , =SO 4 , =SO 3).

По типу дыхания выделяют четыре группы микроорганизмов.

  • 1. Облигатные (строгие) аэробы . Им необходим молекулярный (атмосферный) кислород для дыхания.
  • 2. Микроаэрофилы нуждаются в уменьшенной концентрации (низком парциальном давлении) свободного кислорода. Для создания этих условий в газовую смесь для культивирования обычно добавляют CO 2 , например до 10 - процентной концентрации.
  • 3. Факультативные анаэробы могут потреблять глюкозу и размножаться в аэробных и анаэробных условиях. Среди них имеются микроорганизмы, толерантные к относительно высоким (близких к атмосферным) концентрациям молекулярного кислорода - т. е. аэротолерантные, а также микроорганизмы которые способны в определенных условиях переключаться с анаэробного на аэробное дыхание.
  • 4. Строгие анаэробы размножаются только в анаэробных условиях т. е. при очень низких концентрациях молекулярного кислорода, который в больших концентрациях для них губителен. Биохимически анаэробное дыхание протекает по типу бродильных процессов, молекулярный кислород при этом не используется.

Аэробное дыхание энергетически более эффективно (синтезируется большее количество АТФ).

В процессе аэробного дыхания образуются токсические продукты окисления (H 2 O 2 - перекись водорода, -О 2 - свободные кислородные радикалы), от которых защищают специфические ферменты, прежде всего каталаза, пероксидаза, пероксиддисмутаза . У анаэробов эти ферменты отсутствуют, также как и система регуляции окислительно-восстановительного потенциала (rH 2 ).

Основные методы создания анаэробных условий для культивирования микроорганизмов.

  • 1. Физический - откачивание воздуха, введение специальной газовой безкислородной смеси (чаще - N 2 - 85%, CO 2 - 10%, H 2 - 5%).
  • 2. Химический - применяют химические поглотители кислорода.
  • 3. Биологический - совместное культивирование строгих аэробов и анаэробов (аэробы поглощают кислород и создают условия для размножения анаэробов).
  • 4. Смешанный - используют несколько разных подходов.

Необходимо отметить, что создание оптимальных условий для строгих анаэробов - очень сложная задача. Очень непросто обеспечить постоянное поддержание безкислородных условий культивирования, необходимы специальные среды без содержания растворенного кислорода, поддержание необходимого окислительно-восстановительного потенциала питательных сред, взятие и доставка, посев материала в анаэробных условиях.

Существует ряд приемов, обеспечивающих более подходящие условия для анаэробов - предварительное кипячение питательных сред, посев в глубокий столбик агара, заливка сред вазелиновым маслом для сокращения доступа кислорода, использование герметически закрывающихся флаконов и пробирок, шприцев и лабораторной посуды с инертным газом, использование плотно закрывающихся эксикаторов с горящей свечой. Используются специальные приборы для создания анаэробных условий - анаэростаты. Однако в настоящее время наиболее простым и эффективным оборудованием для создания анаэробных и микроаэрофильных условий является система “Газпак” со специальными газорегенерирующими пакетами, действующими по принципу вытеснения атмосферного воздуха газовыми смесями в герметически закрытых емкостях.

Основные принципы культивирования микроорганизмов на питательных средах.

  • 1. Использование всех необходимых для соответствующих микробов питательных компонентов.
  • 2. Оптимальные температура, рН, rH 2 , концентрация ионов, степень насыщения кислородом, газовый состав и давление.

Микроорганизмы культивируют на питательных средах при оптимальной температуре в термостатах, обеспечивающих условия инкубации.

По температурному оптимуму роста выделяют три основные группы микроорганизмов.

  • 1. Психрофилы - растут при температурах ниже +20 градусов Цельсия.
  • 2. Мезофилы - растут в диапозоне температур от 20 до 45 градусов (часто оптимум - при 37 градусах С).
  • 3. Термофилы - растут при температурах выше плюс 45 градусов.

Краткая характеристика питательных сред.

По консистенции выделяют жидкие, плотные (1,5 - 3% агара) и полужидкие (0,3 - 0,7 % агара) среды.

Агар - полисахарид сложного состава из морских водорослей, основной отвердитель для плотных (твердых) сред. В качестве универсального источника углерода и азота применяют пептоны - продукты ферментации белков пепсином, различные гидролизаты - мясной, рыбный, казеиновый, дрожжевой и др.

По назначению среды разделяют на ряд групп:

Универсальные (простые), пригодные для различных нетребовательных микроорганизмов (мясо - пептонный бульон - МПБ, мясо - пептонный агар - МПА);

Специальные - среды для микроорганизмов, не растущих на универсальных средах (среда Мак - Коя на туляремию, среда Левенштейна - Иенсена для возбудителя туберкулеза);

Дифференциально - диагностические - для дифференциации микроорганизмов по ферментативной активности и культуральным свойствам (среды Эндо, Плоскирева, Левина, Гисса);

Селективные (элективные) - для выделения определенных видов микроорганизмов и подавления роста сопутствующих - пептонная вода, селенитовая среда, среда Мюллера.

По происхождению среды делят на естественные, полусинтетические и синтетические.

Рост и размножение микроорганизмов.

Бактериальные клетки размножаются в результате деления. Основные стадии размножения микробов в жидкой среде в стационарных условиях:

Лаг-фаза (начальная стадия адаптации с медленным темпом прирости биомассы бактерий);

Экспоненциальная (геометрического роста) фаза с резким ростом численности популяции микроорганизмов (2 в степеии n);

Стационарная фаза (фаза равновесия размножения и гибели микробных клеток);

Стадия гибели - уменьшение численности популяции в связи с уменьшением и отсутствием условий для размножения микроорганизмов (дефицит питательных веществ, изменение рH, rH 2 , концентрации ионов и других условий культивирования).

Данная динамика характерна для периодических культур с постепенным истощением запаса питательных веществ и накоплением метаболитов.

Если в питательной среде создают условия для поддержания микробной популяции в экспоненциальной фазе - это хемостатные (непрерывные) культуры .

Характер роста бактерий на плотных и жидких питательных средах: сплошной рост, образование колоний, осадок, пленка, помутнение.

Чистая культура - популяция одного вида микроорганизмов.

Основные принципы получения чистых культур: механическое разобщение, рассев, серийные разведения, использование элективных сред, особых условий культивирования (с учетом устойчивости некоторых микробов к определенным температурам, кислотам, щелочам, парциальному давлению кислорода, рН и мн. др).

Для выделœения чистой культуры микроорганизмов, изучения их биологических свойств с целью идентификации, а также для получения биомассы крайне важно размножить микроорганизмы в условиях лаборатории. Культивирование, или выращивание, микробов возможно лишь при создании определœенных условий для их жизнедеятельности. Большинство бактерий, дрожжей, плесеней культивируют на искусственных питательных средах. Вирусы и риккетсии размножаются только в живых клетках, культуре тканей, курином эмбрионе или в организме животного.

Искусственные среды, применяемые для культивирования микроорганизмов, должны соответствовать определœенным требованиям: быть легкоусвояемыми, с необходимым составом"азотистых и углеводных веществ, витаминов, крайне важной концентрацией солей, с определœенным водородным показателœем (рН среды); обладать буферными свойствами; иметь оптимальный окислительно-восстановительный потенциал.

Питательные среды должны также содержать достаточное количество воды и обязательно быть стерильными, т. е. до посœева не содержать микроорганизмов. Источником азота в средах бывают различные органические, редко - неорганические соединœения. Часто к безбелковым средам добавляют пептон, представляющий собой продукт неполного гидролиза белка. Протеолитические микроорганизмы в качестве азотистого вещества могут использовать желатин («животный студень»). Источником углерода в питательных средах чаще служат углеводы, спирты, некоторые органические кислоты.

Для приготовления искусственных питательных сред можно использовать различные естественные продукты: молоко, кровь, сыворотку, мясо, желток куриного яйца, картофель и другие органические вещества и минœеральные соли.

Искусственные питательные среды по назначению подразделяют на четыре основные группы: универсальные, специальные, избирательные (элективные) и дифференциально-диагностические.

К универсальным средам относят мясо-пептонный бульон и мясо-пептонный агар, на которых растут многие виды патогенных и непатогенных бактерий.

Специальные среды применяют для выращивания бактерий, не множающихся на универсальных средах. К специальным относят еды с молоком, сывороткой крови, с добавлением крови животных,т-чюкозы и др. На них выращивают молочнокислые бактерии, паТ огенные и другие микроорганизмы.

В избирательных (элективных) средах хорошо развиваются только бактерии определœенных видов. К таким средам относятся среды обогащения, в которых интересующий исследователя вид растет быстрее сопутствующих бактерий. К примеру, среда Кесслер, содержащая в своем составе генцианвиолет и желчь крупного рогатого скота͵ элективна для устойчивых к этим веществам грамотрицательных кишечных палочек и вместе с тем селœективна для чувствительных грамположительных

бактерий.

Дифференциально-диагностические среды используют для дифференциации определœенных видов бактерий по их культуральным и биохимическим свойствам. К ним относятся:

среды для определœения протеолитической активности (мясопептонный желатин - МПЖ, молочный агар и др.);

среды для определœения ферментации углеводов (среды Гисса, Эидо, Плоскирева и др.);

среды для определœения гемолитической способности (кровяной агар и другие среды с добавлением крови животных);

среды для определœения восстановительной (редуцирующей) способности микроорганизмов (среда Вильсон-Блера);

селœективные среды, применяемые для дифференциации прототрофных и ауксотрофных бактерий.

По консистенции питательные среды бывают плотными, полужидкими и жидкими. Для получения сред плотной консистенции к жидким средам добавляют 2-2,5 % агара или 10-20 % желатина. Полужидкие среды получают при добавлении 0,5- 1,0 % агара. Агар (по-малайски «желœе») - плотное волокнистое вещество, получаемое из красных водорослей и образующее в водных растворах плотный гель (студень). Он состоит в основном из полисахаридов (70-75 %). Основными компонентами агара являются высокомолекулярные вещества агароза и агаропептин, которые не расщепляются и не усваиваются микроорганизмами. В связи с этим агар не является питательным субстратом, его добавляют в среды исключительно для получения плотной консистенции. Агар расплавляется в воде при 100 °С, а застывает при 40-43 °С. Его выпускают в виде желтоватых пластинок или серовато-белого порошка.

Осмотические условия, необходимые для жизнедеятельности микробов, создают в питательной среде добавлением хлорида натрия или определœенным сочетанием солей фосфата натрия и фосфата калия Для жизнедеятельности микроорганизмов большое значение имеет реакция среды - водородный показатель (рН), который определяется соотношением водородных (Н +) и гидроксильных (ОН) ионов. Он представляет собой логарифм числа абсолютной концентрации водородных ионов.

Водородный показатель нейтральной реакции соответствует 7,0. В этом случае число водородных ионов равно числу гидроксильных. Показатель ниже 7,0 указывает на кислую реакцию, а выше 7,0 - на щелочную. Микроорганизмы приспособились развиваться в условиях с чрезвычайно широким диапазоном рН - от 2,0 до 8,5. Большинство сапрофитных и патогенных микроорганизмов культивируют при слабощелочной реакции среды с рН 7,2-7,4. Для культивирования молочнокислых бактерий, дрожжей и плесеней необходима кислая реакция среды, рН 5,0-6,5.

Сегодня многие питательные среды выпускают в виде готовых сухих сред-полуфабрикатов, содержащих всœе необходимые для жизнедеятельности микроорганизмов ингредиенты. Для приготовления питательной среды порошок разводят водой, полученную смесь кипятят, устанавливают крайне важное значение рН и стерилизуют.

Большое значение для роста и размножения микроорганизмов на искусственных питательных средах имеют температурные условия. По отношению к температурному режиму всœе микроорганизмы делят на три группы: психрофильные (холодолюбивые), мезофильные (средние), термофильные (теплолюбивые). Температурные границы размножения у психрофилов составляют от 0 до 20 °С, у мезофилов - от 20 до 45 °С, у термофилов - от 45 до 70 °С.

При выращивании аэробов посœевы культивируют в термостатах при доступе кислорода воздуха, т. е. в обычных условиях. Для культивирования анаэробов создают бескислородные условия, которые можно достичь физическими, химическими и биологическими методами. Используют также анаэробные термостаты.

Физические методы основаны на создании вакуума в специальных аппаратах анаэростатах или в вакуум-эксикаторах, в которые сначала помещают посœевы, а затем в аппаратах создают разрежение.

Иногда воздух в анаэростатах заменяют углекислым газом, азотом или другим инœертным газом. Доступ кислорода в питательную среду можно затруднить, если культивировать анаэробов в глубинœе столбика питательного агара или внутри запаянных стеклянных трубок. Анаэробные условия можно создать и более простыми способами: с помощью слоя агара, залитого поверх посœевов на плотной питательной среде, или с помощью вазелинового масла, которым покрывают жидкую питательную среду (среда Китта-Тароцци). Химические методы заключаются в том, что в эксикатор с посœевами помещают химические вещества, к примеру пирогаллол и щелочь, реакция между которыми идет с поглощением кислорода.

Биологический метод основан на одновременном культивировании аэробов и анаэробов на плотных питательных средах в герметически закупоренных чашках Петри. При этом кислород поглощается растущими аэробами, посœеянными на одной половинœе среды, после чего начинается рост анаэробов, посœев которых сделан на другой половинœе.

Методы выделения чистых культур бактерий.

I. Методы, основанные на механическом разобщении.

1. метод посева штрихом

2. метод посева газоном

3. метод посева по Дригальскому(шпатель не стерелизуют!)

4. метод посева по Голду(количественный)

30-40 штрихов, петлю стерилизуют перед каждым след разнесением

5. метод разведений(количественный)

1:10,1:100,1:1000, потом-посев методом газона из каждой пробирки

6. метод Коха(пластинчатых разводок)

1л,в нем- 1-10мл материала

Разливают ̴ 50 чашек

II. Методы, основанные на биологических свойствах микробов

1. метод прогревания для выделения спорообразующих микробов

материал прогревают при Т=80 ͦ , 20 мин, вегетативные клетки гибнут, споры остаются, при высеве прорастают

2. метод щукевича

для выделения ползучего роста микробов(Proteus, сем. Enterobacteriaceae)

3. обработка материала

а)кислотами для выделения кислотоустойчивых бактерий

б)антибиотиками(пенициллином) – гибнут грамм+, остаются грамм-

в)бактериофагами

4. посев на элективные питательные среды

а)ЖСА(9-10% NaCl для выделения стафилококков)

б)на 1% пептонную воду(pH=8) для выделения холерного вибриона

5. культивирование при определенной температуре

а)+5 ͦ выделение психрофилов

б) +60 ͦ выделение термофилов



Особенности культивирования анаэробных бактерий. Методы создания анаэробиоза.

Физические

Культивирование в анаэростате (выкачивается воздух) или аппарате Киппа (замещается инертным газом, например азотом)

Трубки Виньяль-Вийона (смешивание с расплавленной и охлаждённой питательной средой с её последующим застыванием – глубинное культивирование)

Засев уколом в высокий столбик (полужидкой среды)

Культивирование под слоем масла

Регенерация жидкой питательной среды перед засевом (кипячение с последующим быстрым охлаждением)

Метод Перетца (в чашку Петри заливается охлаждённая среда, смешанная с культурой, на поверхность – предметное стекло, сняв которое можно легко добраться до выросшей культуры)

Химические

В замкнутом объёме протекает химическая реакция с поглощением кислорода

– метод Аристовского (сыпучие ингредиенты)

– метод Омелянского (жидкие ингредиенты)

Включение в питательную среду редуцирующих веществ (связывают растворённый в среде кислород)

– глюкоза

– тиогликолевая кислота и др.

Биологические

метод Фортнера (в замкнутом объёме культивируются анаэробы и жадный аэроб – после прекращения роста которого в безкислородной среде начинают расти анаэробы)

Метод Кита-Тароцци

среда Китта-Тароцци

МПБ с глюкозой

на поверхности – масло

на дне – кусочки печени

Принципы культивирования микроорганизмов.

7.Классификация искусственных питательных сред

n Агар – полисахарид, добываемый из морских водорослей определенных видов; используется для уплотнения питательных сред в бактериологии по такому же алгоритму, как в быту крахмал или желатин

n Свернутые питательные среды – это плотные среды, содержащие сыворотку крови или обогащенные белком (яичные, например), которые уплотняются при прогревании в процессе стерилизации

n Натуральные среды готовятся на основе отваров, экстрактов мяса, рыбы, овощей и др. натуральных продуктов

n Простые натуральные среды представляют собой такие отвары или экстракты

n Сложные натуральные среды получают путем добавления в простые натуральные среды любого вещества (красителя, сахара, антибиотика, крови и т.д.)

n Синтетические питательные среды получают, смешивая чистые химические вещества (как правило, соли)

n Элективные (селективные, избирательные, обогащения) питательные среды – это среды, содержащие вещества, используемые бактериями определенных видов и не благоприятствующие или даже препятствующие росту других бактерий

n Дифференциально-диагностические питательные среды – это среды, позволяющие отличать одни виды бактерий от других по их ферментативной активности или культуральным свойствам

n Консервирующие питательные среды – это среды, используемые, например, при доставке патологического материала в бактериологическую лабораторию – так как метаболическая активность на них бактерий сводится практически к нулю, то бактерии сохраняются, но не размножаются

n По консистенции

Полужидкие (0,5% агара)

Плотные (1,5-2% агара, свернутые)

n По составу

Натуральные

мясо-пептонный агар и бульон (МПА и МПБ)

кусочки овощей

простые + добавка

Синтетические

n По назначению

Основные:

Универсальные (простые натуральные)

Специальные (сложные натуральные)

Элективные (селективные)