Эластичные нанотрубки. «Углеродное» будущее электроники. Виды и классификация углеродных нанотрубок

Углеродные нанотрубки– это материал, которым грезят многие ученые. Высокий коэффициент прочности, превосходная тепло- и электропроводность, огнестойкость и весовой коэффициент на порядок выше, чем у большинства известных материалов. Углеродные нанотрубки представляют свернутый в трубку лист графена. Русские ученые Константин Новоселов, а также Андрей Гейм за его открытие получили Нобелевскую премию в 2010 году.

Впервые же наблюдать за углеродными трубками на поверхности железного катализатора могли советские ученые еще в 1952 году. Однако потребовалось пятьдесят лет, чтобы ученые смогли увидеть в нанотрубках перспективный и полезный материал. Одним из поразительных свойств этих нанотрубок является то, что их свойства определяются геометрией. Так от угла скручивания зависят их электрические свойства — нанотрубки могут демонстрировать полупроводниковую и металлическую проводимость.

Многие перспективные направления в нанотехнологиях сегодня связывают именно с углеродными нанотрубками. Если просто, то углеродные нанотрубки представляют гигантские молекулы или каркасные структуры, которые состоят лишь из атомов углерода. Легко представить такую нанотрубку, если вообразить, что происходит сворачивание в трубку графена – это один из молекулярных слоев графита. Метод сворачивания нанотрубок во многом определяет конечные свойства данного материала.

Естественно, что никто не создает нанотрубки, специально сворачивая их из листа графита. Образуются нанотрубки сами, к примеру, на поверхности угольных электродов либо между ними при дуговом разряде. Атомы углерода при разряде испаряются с поверхности и соединяются между собой. В результате образуются нанотрубки различного вида – многослойные, однослойные и с различными углами закручивания.

Основная классификация нанотрубок как раз идет по числу составляющих их слоев:

  • однослойные нанотрубки – самый простой вид нанотрубок. Большая их часть из них имеют диаметр порядка 1 нм при длине, которая может получиться в тысячи раз больше;
  • многослойные нанотрубки, состоящих из нескольких слоев графена, они складываются в форме трубки. Между слоями образуется расстояние 0,34 нм, то есть идентичное расстоянию между слоями в кристалле графита.
Устройство

Нанотрубки представляют протяженные цилиндрические структуры углерода, которые могут иметь длину до нескольких сантиметров и диаметр от одного до нескольких десятков нанометров. В то же время сегодня имеются технологии, которые позволяют сплетать их в нити неограниченной длины. Они могут состоять из одной или нескольких графеновых плоскостей, свернутых в трубку, которые обычно заканчиваются полусферической головкой.

Диаметр нанотрубок составляет несколько нанометров, то есть несколько миллиардных долей метра. Стенки углеродных нанотрубок выполнены из шестиугольников, в вершинах которых находятся атомы углерода. Трубки могут иметь разный тип строения, именно он влияет на их механические, электронные и химические свойства. Однослойные трубки имеют меньше дефектов, в то же время после отжига при высокой температуре в инертной атмосфере удается получить и бездефектные варианты трубок. Многослойные нанотрубки отличаются от стандартных однослойных существенно более широким разнообразием конфигураций и форм.

Синтезировать углеродные нанотрубки можно разными способами, но наиболее распространенными являются:
  • Дуговой разряд . Метод обеспечивает получение нанотрубок на технологических установках для выработки фуллеренов в плазме дугового разряда, который горит в атмосфере гелия. Но здесь применяются иные режимы горения дуги: более высокое давление гелия и низкие плотности тока, а также катоды большего диаметра. В катодном осадке находятся нанотрубки длиной до 40 мкм, они растут перпендикулярно от катода и объединяются в цилиндрические пучки.
  • Метод лазерной абляции . Метод базируется на испарении мишени из графита в специальном высокотемпературном реакторе. Нанотрубки образуются на охлажденной поверхности реактора в виде конденсата испарения графита. Данный метод позволяет преимущественно получать однослойные нанотрубки с контролем необходимого диаметра посредством температуры. Но указанный метод существенно дороже других.
  • Химическое осаждение из газовой фазы . Данный метод предполагает подготовку подложки со слоем катализатора – это могут быть частицы железа, кобальта, никеля или их комбинаций. Диаметр нанотрубок, выращенных указанным способом, будет зависеть от размера используемых частиц. Подложка нагревается до 700 градусов. Для инициации роста нанотрубок вводятся в реактор углеродосодержащий газ и технологический газ (водород, азот или аммиак). Нанотрубки растут на участках катализаторов из металла.
Применения и особенности
  • Применения в фотонике и оптике . Подбирая диаметр нанотрубок можно обеспечить оптическое поглощение в большом спектральном диапазоне. Однослойные углеродные нанотрубки проявляют сильную нелинейность насыщающегося поглощения, то есть при достаточно интенсивном свете они становятся прозрачными. Поэтому они могут применяться для разных приложений в области фотоники, к примеру, в маршрутизаторах и коммутаторах, для создания ультракоротких лазерных импульсов и регенерации оптических сигналов.
  • Применение в электронике . На данный момент заявлено множество способов использования нанотрубок в электронике, однако реализовать удается лишь небольшую ее часть. Наибольший интерес вызывает применение нанотрубок в прозрачных проводниках в качестве термоустойчивого межфазного материала.

Актуальность попыток внедрения нанотрубок в электронике вызвано необходимостью замены индия в теплоотводах, которые применяются в транзисторах большой мощности, графических процессорах и центральных процессорах, ведь запасы этого материала уменьшаются, а цена на него растет.

  • Создание сенсоров . Углеродные нанотрубки для сенсоров – одно из наиболее интересных решений. Ультратонкие пленки из одностенных нанотрубок на данный момент могут стать наиболее лучшей основой для электронных сенсоров. Производить их можно с применением разных методов.
  • Создание биочипов, биосенсоров , контроля адресной доставки и действия лекарств в биотехнологической отрасли. Работы в данном направлении сегодня вовсю ведутся. Высокопроизводительный анализ, выполняемый с использованием нанотехнологий, позволит существенно уменьшить время, которое нужно для вывода технологии на рынок.
  • Сегодня резко растет производство нанокомпозитов , в основном полимерных. При введении в них даже небольшого количества углеродных нанотрубок обеспечивается существенное изменение свойств полимеров. Так у них повышается термическая и химическая устойчивость, теплопроводность, электропроводность, улучшаются механические характеристики. Усовершенствованы десятки материалов при помощи добавления в них углеродных нанотрубок;

— композитные волокна на основе полимеров с нанотрубками;
— керамические композиты с добавками. Увеличивается трещиностойкость керамики, появляется защита электромагнитного излучения, увеличивается электро- и теплопроводность;
— бетон с нанотрубками – повышается марка, прочность, трещиностойкость, уменьшается усадка;
— металлические композиты. Особенно медные композиты, у которых механические свойства в несколько раз выше, чем у обычной меди;
— гибридные композиты, в которых содержатся сразу три компонента: неорганические или полимерные волокна (ткани), связующее вещество и нанотрубки.

Достоинства и недостатки
Среди достоинств углеродных нанотрубок можно отметить:
  • Множество уникальных и по-настоящему полезных свойств, которые можно применять в области внедрения энергоэффективных решений, фотоники, электроники, и иных приложений.
  • Это наноматериал, который обладает высоким коэффициентом прочности, превосходной тепло- и электропроводностью, огнестойкостью.
  • Улучшение свойств других материалов при внедрении в них небольшого количества углеродных нанотрубок.
  • Углеродные нанотрубки с открытым концом проявляют капиллярный эффект, то есть они могут втягивать в себя расплавленные металлы и иные жидкие вещества;
  • Нанотрубки сочетают в себе свойства твердого тела и молекул, что открывает значительные перспективы.
Среди недостатков углеродных нанотрубок можно отметить:
  • Углеродные нанотрубки на данный момент не производятся в промышленных масштабах, поэтому их серийное применение ограничено.
  • Стоимость производства углеродных нанотрубок высока, что также ограничивает их применение. Тем не менее, ученные усиленно работают над снижением себестоимости их производства.
  • Необходимость совершенствования технологий производства для создания углеродных нанотрубок с точно заданными свойствами.
Перспективы
В ближайшем будущем углеродные нанотрубки будут применяться повсеместно, из них будут создаваться:
  • Нановесы, композитные материалы, сверхпрочные нити.
  • Топливные элементы, прозрачные проводящие поверхности, нанопровода, транзисторы.
  • Новейшие нейрокомпьютерные разработки.
  • Дисплеи, светодиоды.
  • Устройства для хранения металлов и газов, капсулы для активных молекул, нанопипетки.
  • Медицинские нанороботы для доставки лекарств и проведения операций.
  • Миниатюрные датчики с ультравысокой чувствительностью. Такие нанодатчики могут найти применение в биотехнологических, медицинских и военных применениях.
  • Трос для космического лифта.
  • Плоские прозрачные громкоговорители.
  • Искусственные мышцы. В будущем появятся киборги, роботы, инвалиды будут возвращаться к полноценной жизни.
  • Двигатели и генераторы энергии.
  • Умная, легкая и комфортная одежда, которая будет защищать от любых невзгод.
  • Безопасные суперконденсаторы с быстрой зарядкой.

Все это в будущем, ведь промышленные технологии создания и использования углеродных нанотрубок находятся на начальном этапе развития, а цена их крайне дорога. Но российские ученые уже заявили, что они нашли способ снизить стоимость создания этого материала в двести раз. Эта уникальная технология производства углеродных нанотрубок на данный момент держится в секрете, но она должна произвести революцию в промышленности и во многих иных областях.

Третье состояние углерода (кроме алмаза и графита) - революционно завоевывает мир новых технологий.
Вот выдержки из нескольких статей (с сылками на них).

http://www.nsu.ru/materials/ssl/text/news/Physics/135.html
Многие из перспективных направлений в материаловедении, нанотехнологии, наноэлектронике, прикладной химии связываются в последнее время с фуллеренами, нанотрубками и другими похожими структурами, которые можно назвать общим термином углеродные каркасные структуры. Что же это такое?
Углеродные каркасные структуры - это большие (а иногда и гигантские!) молекулы, состоящие исключительно из атомов углерода. Можно даже говорить, что углеродные каркасные структуры - это новая аллотропная форма углерода (в дополнение к давно известным: алмазу и графиту). Главная особенность этих молекул - это их каркасная форма: они выглядят как замкнутые, пустые внутри "оболочки".
Наконец, поражает разнообразие применений, которые уже придуманы для нанотрубок. Первое, что напрашивается само собой, это применение нанотрубок в качестве очень прочных микроскопических стержней и нитей. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали! Правда, в настоящее время максимальная длина нанотрубок составляет десятки и сотни микронов - что, конечно, очень велико по атомным масштабам, но слишком мало для повседневного использования. Однако длина нанотрубок, получаемых в лаборатории, постепенно увеличивается - сейчас ученые уже вплотную подошли к миллиметровому рубежу: см. работу , где описан синтез многослойной нанотрубки длиной в 2 мм. Поэтому есть все основания надеяться, что в скором будущем ученые научатся выращивать нанотрубки длиной в сантиметры и даже метры! Безусловно, это сильно повлияет на будущие технологии: ведь "трос" толщиной с человеческий волос, способный удерживать груз в сотни килограмм, найдет себе бесчисленное множество применений.
Необычные электрические свойства нанотрубок сделают их одним из основных материалов наноэлектроники. Уже сейчас созданы опытные образцы полевых транзисторов на основе одной нанотрубки: прикладывая запирающее напряжение нескольких вольт, ученые научились изменять проводимость однослойных нанотрубок на 5 порядков!
Разработано уже и несколько применений нанотрубок в компьютерной индустрии. Например, созданы и опробованы прототипы тонких плоских дисплеев, работающих на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, с другого конца начинают испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пикселя. Получающееся при этом зерно изображения будет фантастически малым: порядка микрона!

http://brd.dorms.spbu.ru/nanotech/print.php?sid=44
Попытка сфотографировать нанотрубки с помощью обычного фотоаппарата со вспышкой привела к тому, что блок нанотрубок при свете вспышки издал громкий хлопок и, ярко вспыхнув, взорвался.
Ошарашенные ученые утверждают, что неожиданно открытый феномен "взрывоопасности" трубок может найти для этого материала новые, совершенно неожиданные применения - вплоть до использования в качестве детонаторов для подрыва боезарядов. А также, очевидно, поставит под сомнение или затруднит их использование в отдельных областях.

http://www.sciteclibrary.com/rus/catalog/pages/2654.html
Открывается перспектива для значительного продления ресурса перезаряжающихся батареек

http://vivovoco.nns.ru/VV/JOURNAL/VRAN/SESSION/NANO1.HTM
Углеродные нанотрубные структуры - новый материал для эмиссионной электроники.

http://www.gazetangn.narod.ru/archive/ngn0221/space.html
Ещё в 1996г было обнаружено, что отдельные углеродные нанотрубки могут самопроизвольно свиваться в канатики из 100- 500 волокон-трубочек, причём прочность этих канатиков оказалась больше, чем у алмаза. Точнее говоря, они в 10- 12 раз прочнее и в 6 раз легче стали. Вы только представьте: нить диаметром в 1 миллиметр могла бы выдержать 20-тонный груз, в сотни миллиардов раз больший её собственного веса! Вот из таких-то ниточек и можно получить сверхпрочные тросы большой длины. Из столь же лёгких и прочных материалов можно строить и каркас лифта - гигантскую башню высотой в три диаметра Земли. По ней и пойдут на громадной скорости пассажирские и грузовые кабины - благодаря сверхпроводящим магнитам, которые, опять же, будут подвешены на канатах из углеродных нанотрубок. Колоссальный грузопоток в космос позволит начать активное освоение других планет.
Если кого-то заинтересовал этот проект, подробности (на русском языке), можно посмотреть, например, на сайте http://private.peterlink.ru/geogod/space/future.htm . Только там нет ни слова об углеродных трубках.
А на http://www.eunet.lv/library/win/KLARK/fontany.txt можно почитать роман Артура Кларка "Фонтаны рая", который сам он считал своим лучшим произведением.

http://www.inauka.ru/science/28-08-01/article4805
По оценкам специалистов, нанотехнологии позволят уже к 2007 году создать микропроцессоры, которые будут содержать около 1 миллиарда транзисторов и смогут работать на частоте до 20 гигагерц при напряжении питания менее 1 вольта.

Нанотрубочный транзистор
Создан первый транзистор, состоящий целиком из углеродных нанотрубок. Тем самым открывается перспектива замены привычных кремниевых чипов более быстрыми, дешевыми и меньшими по размеру компонентами.
Первый в мире нанотрубочный транзистор представляет собой нанотрубку Y-образной формы, которая ведет себя подобно привычному транзистору - потенциал , приложенный к одной из «ножек», позволяет управлять прохождением тока между двумя другими. При этом вольт-амперная характеристика «нанотрубочного транзистора» практически идеальна: ток или течет, или нет.

http://www.pool.kiev.ua/clients/poolhome.nsf/0/a95ad844a57c1236c2256bc6003dfba8?OpenDocument
Согласно материалам статьи, опубликованной 20 мая в научном журнале Applied Physics Letters, специалисты IBM усовершенствовали транзисторы на углеродных нанотрубках. В результате экспериментов с различными молекулярными структурами исследователи смогли достичь высочайшей на сегодняшний момент проводимости для транзисторов на углеродных нанотрубках. Чем выше проводимость, тем быстрее работает транзистор и тем более мощные интегральные схемы можно построить на его основе. Кроме того, исследователи обнаружили, что проводимость транзисторов на углеродных нанотрубках более чем вдвое превосходит соответствующий показатель для самых быстрых кремниевых транзисторов того же размера.

http://kv.by/index2003323401.htm
Группа профессора Калифорнийского университета в Беркли Алекса Зеттла (Alex Zettl) сделала очередной прорыв в области нанотехнологий. Ученые создали первый самый маленький наномасштабный моторчик на основе многостенных нанотрубок, о чем сообщается в журнале "Nature" 24 июля. Углеродная нанотрубка выполняет своего рода роль оси, на которой монтируется ротор. Максимальные размеры наномоторчика порядка 500 нм, ротор имеет длину от 100 до 300 нм, а вот нанотрубка-ось имеет в поперечнике размер всего в несколько атомов, т.е. примерно 5-10 нм.

http://www.computerra.ru/hitech/tech/26393/
На днях бостонская компания Nantero выступила с заявлением о разработке плат памяти принципиально нового образца, созданных на основе нанотехнологий. Nantero Inc. активно занимается разработкой новых технологий, в частности, уделяет немалое внимание поиску способов создания энергонезависимой оперативной памяти (RAM) на основе углеродных нанотрубок. В своём выступлении представитель компании объявил о том, что они находятся в шаге от создания плат памяти ёмкостью 10 Гб. В связи с тем, что в основе строения устройства лежат нанотрубки, новую память предлагается называть NRAM (Nonvolatile (энергонезависимая) RAM).

http://www.ixs.nm.ru/nan0.htm
Одним из результатов проведенного исследования стало практическое использование выдающихся свойств нанотрубок для измерения массы частиц крайне малых размеров. При размещении взвешиваемой частицы на конце нанотрубки резонансная частота уменьшается. Если нанотрубка калибрована (т.е. известна ее упругость), можно по смещению резонансной частоты определить массу частицы.

http://www.mediacenter.ru/a74.phtml
В числе первых коммерческих применений будет добавление нанотрубок в краски или пластмассу для придания этим материалам свойств электропроводности. Это позволит заменить в некоторых изделиях металлические детали полимерными.
Углеродные нанотрубки - дорогой материал. Сейчас CNI продает его по цене 500 долл. за грамм. К тому же технология очистки углеродных нанотрубок - отделение хороших трубок от плохих - и способ введения нанотрубок в другие продукты требуют совершенствования. Для решения некоторых задач может потребоваться открытие нобелевского уровня, утверждает Джошуа Вольф, управляющий партнер венчурной фирмы Lux Capital, специализирующейся на нанотехнологии.

Исследователи заинтересовались углеродными нанотрубками из-за их электропроводности, которая оказалась выше, чем у всех известных проводников. Они также имеют прекрасную теплопроводность, стабильны химически, отличаются чрезвычайной механической прочностью (в 1000 раз крепче стали) и, что самое удивительное, приобретают полупроводниковые свойства при скручивании или сгибании. Для работы им придают форму кольца. Электронные свойства углеродных нанотрубок могут быть как у металлов либо как у полупроводников (в зависимости от ориентации углеродных многоугольников относительно оси трубки), т.е. зависят от их размера и формы.

http://www.ci.ru/inform09_01/p04predel.htm
Металлические проводящие ток нанотрубки могут выдерживать плотности тока в 102-103 раза выше, чем обычные металлы, а полупроводниковые нанотрубки можно электрически включать и выключать посредством поля, генерируемого электродом, что позволяет создавать полевые транзисторы.
Ученые из IBM разработали метод так называемого "конструктивного разрушения", который позволил им разрушить все металлические нанотрубки и при этом оставить неповрежденными полупроводниковые.

http://www.pr.kg/articles/n0111/19-sci.htm
Углеродные нанотрубки нашли еще одно применение в борьбе за здоровье человека - на сей раз китайские ученые использовали нанотрубки для очистки питьевой воды от свинца.

http://www.scientific.ru/journal/news/n030102.html
Мы регулярно пишем об углеродных нанотрубках, однако на самом деле существуют и другие типы нанотрубок, получаемые из различных полупроводниковых материалов. Ученые умеют выращивать нанотрубки с точно заданной толщиной стенки, диаметром и длиной.
Нанотрубки могут быть использованы в качестве нанотрубопроводов для транспортировки жидкости, они смогут также играть роль наконечников для шприцев с точно выверенным количеством нанокапель. Нанотрубки могут применяться как наносверла, нанопинцеты, острия для сканирующих туннельных микроскопов. Нанотрубки с достаточно толстыми стенками и маленьким диаметром могут служить поддерживающими опорами для нанообъектов, а нанотрубки с большим диаметром и тонкими стенками - выполнять роль наноконтейнеров и нанокапсул. Нанотрубки из соединений на основе кремния, включая карбид кремния, особенно хороши для изготовления механических изделий, так как эти материалы прочны и эластичны. Также твердотельные нанотрубки могут найти применение в электронике.

http://www.compulenta.ru/2003/5/12/39363/
Исследовательское подразделение корпорации IBM сообщило о важном достижении в области нанотехнологий. Специалистам IBM Research удалось заставить светиться углеродные нанотрубки - чрезвычайно перспективный материал, лежащий в основе многих нанотехнологических разработок во всем мире.
Светоизлучающая нанотрубка имеет диаметр всего 1,4 нм, то есть в 50 тысяч раз тоньше человеческого волоса. Это самое миниатюрное в истории твердотельное светоизлучающее устройство. Его создание стало результатом программы изучения электрических свойств углеродных нанотрубок, проводящейся в IBM в течение нескольких последних лет.

http://bunburyodo.narod.ru/chem/solom.htm
Помимо уже упомянутого выше очень пока далекого от осуществления создания металлических нанопроводов, популярна разработка так называемых холодных эмиттеров на нанотрубках. Холодные эмиттеры - ключевой элемент плоского телевизора будущего, они заменяют горячие эмиттеры современных электронно-лучевых трубок, к тому же позволяют избавиться от гигантских и небезопасных разгонных напряжений 20-30 кВ. При комнатной температуре нанотрубки способны испускать электроны, производя ток такой же плотности, как и стандартный вольфрамовый анод при почти тысяче градусов, да еще и при напряжении всего 500 В. (А для получения рентгеновских лучей нужны десятки киловольт и температура 1500 градусов (nan))

http://www.pereplet.ru/obrazovanie/stsoros/742.html
Высокие значения модуля упругости углеродных нанотрубок позволяют создать композиционные материалы, обеспечивающие высокую прочность при сверхвысоких упругих деформациях. Из такого материала можно будет сделать сверхлегкие и сверхпрочные ткани для одежды пожарных и космонавтов.
Для многих технологических применений привлекательна высокая удельная поверхность материала нанотрубок. В процессе роста образуются случайным образом ориентированные спиралевидные нанотрубки, что приводит к образованию значительного количества полостей и пустот нанометрового размера. В результате удельная поверхность материала нанотрубок достигает значений около 600 м2/г. Столь высокая удельная поверхность открывает возможность их использования в фильтрах и других аппаратах химических технологий.

http://www.1september.ru/ru/him/2001/09/no09_1.htm
Нанокабель от Земли до Луны из одиночной трубки можно было бы намотать на катушку размером с маковое зернышко.
По своей прочности нанотрубки превосходят сталь в 50-100 раз (хотя нанотрубки имеют в шесть раз меньшую плотность). Модуль Юнга - характеристика сопротивления материала осевому растяжению и сжатию - у нанотрубок в среднем вдвое выше, чем у углеродных волокон. Трубки не только прочные, но и гибкие, напоминают по своему поведению не ломкие соломинки, а жесткие резиновые трубки.
Нить диаметром 1 мм, состоящая из нанотрубок, могла бы выдержать груз в 20 т, что в несколько сотен миллиардов раз больше ее собственной массы.
Международная группа ученых показала, что нанотрубки можно использовать для создания искусственных мускулов, которые при одинаковом объеме могут быть втрое сильнее биологических, не боятся высоких температур, вакуума и многих химических реагентов.
Нанотрубки - идеальный материал для безопасного хранения газов во внутренних полостях. В первую очередь это относится к водороду, который давно стали бы использовать как топливо для автомобилей, если бы громоздкие, толстостенные, тяжелые и небезопасные при толчках баллоны для хранения водорода не лишали водород его главного преимущества - большого количества энерги и, выделяемой на единицу массы (на 500 км пробега автомобиля требуется всего около 3 кг Н2). Заполнять "бензобак" с нанотрубками можно было бы стационарно под давлением, а извлекать топливо - небольшим подогреванием "бензобака". Чтобы превзойти обычные газовые баллоны по массовой и объемной плотности запасенной энерги и (масса водорода, отнесенная к его массе вместе с оболочкой или к его объему вместе с оболочкой), нужны нанотрубки с полостями относительно большого диаметра - более 2-3 нм.
Биологи сумели ввести в полость нанотрубок небольшие протеины и молекулы ДНК. Это - и метод получения катализаторов нового типа, и в перспективе способ доставки биологически активных молекул и лекарств к тем или иным органам.

Министерство образования и науки Российской Федерации

Федеральное государственное учреждение высшего профессионального образования

Российский химико-технологический университет им. Д. И. Менделеева

Факультет нефтегазохимии и полимерных материалов

Кафедра химической технологии углеродных материалов


ОТЧЕТ ПО ПРАКТИКЕ

на тему УГЛЕРОДНЫЕ НАНОТРУБКИ И НАНОВОЛКНА


Выполнил: Маринин С. Д.

Проверил: доктор химических наук, Бухаркина Т. В.


Москва, 2013 г.


Введение


Сфера нанотехнологий считается во всем мире ключевой темой для технологий XXI века. Возможности их разностороннего применения в таких областях экономики, как производство полупроводников, медицина, сенсорная техника, экология, автомобилестроение, строительные материалы, биотехнологии, химия, авиация и космонавтика, машиностроение и текстильная промышленность, несут в себе огромный потенциал роста. Применение продукции нанотехнологий позволит сэкономить на сырье и потреблении энергии, сократить выбросы в атмосферу и будет способствовать тем самым устойчивому развитию экономики.

Разработками в сфере нанотехнологий занимается новая междисциплинарная область - нанонаука, одним из направлений которой является нанохимия. Нанохимия возникла на стыке веков, когда казалось, что в химии уже все открыто, все понятно и остается только использовать на благо общества приобретенные знания.

Химики всегда знали и хорошо понимали значение атомов и молекул как основных «кирпичиков» огромного химического фундамента. В то же время развитие новых методов исследования, таких как электронная микроскопия, высокоселективная масс-спектроскопия, в сочетании со специальными методами приготовления образцов позволило получать информацию о частицах, содержащих небольшое, менее сотни, количество атомов.

У подобных частиц размером около 1 нм (10-9 м - это всего лишь миллиметр, поделенный на миллион) обнаружены необычные, труднопредсказуемые химические свойства.

Наиболее известными и понятными для большинства людей являются следующие такие наноструктуры, как фуллерены, графен, углеродные нанотрубки и нановолокна. Все они состоят из атомов углерода, связанных между собой, но форма их существенно различается. Графен представляет собой плоскость, монослой, «покрывало» из атомов углерода в SP2 гибридизации. Фуллерены - замкнутые многоугольники, чем-то напоминающие футбольный мяч. Нанотрубки - цилиндрические полые объемные тела. Нановолокна могут представлять собой конусы, цилиндры, чаши.В своей работе я постараюсь осветить именно нанотрубки и нановолокна.


Строение нанотрубок и нановолокон


Что такое углеродные нанотрубки? Углеродные нанотрубки это углеродный материал, представляющий собой цилиндрические структуры с диаметром порядка нескольких нанометров, состоящие из свернутых в трубку графитовых плоскостей. Графитовая плоскость представляет собой непрерывную гексагональную сетку с атомами углерода в вершинах шестиугольников. Углеродные нанотрубки могут различаться по длине, диаметру, хиральности (симметрии свернутой графитовой плоскости) и по количеству слоев. Хиральность <#"280" src="doc_zip1.jpg" />



Одностенные нанотрубки. Однослойные углеродные нанотрубки (ОСУНТ) - подвид углеродных нановолокон со структурой, образованной сворачиванием графена в цилиндр с соединением его сторон без шва. Сворачивание графена в цилиндр без шва возможно только конечным числом способов, отличающихся направлением двумерного вектора, который соединяет две эквивалентные точки на графене, совпадающие при его сворачивании в цилиндр. Этот вектор называется вектором хиральностиоднослойной углеродной нанотрубки. Таким образом, однослойные углеродные нанотрубки различаются диаметром и хиральностью. Диаметр однослойных нанотрубок, по экспериментальным данным, варьируется от ~ 0,7 нм до ~ 3-4 нм. Длина однослойной нанотрубки может достигать 4 см. Существуют три формы ОСУНТ: ахиральные типа «кресла» (две стороны каждого шестиугольника ориентированы перпендикулярно оси УНТ), ахиральные типа «зигзаг» (две стороны каждого шестиугольника ориентированы параллельно оси УНТ) и хиральные или спиралевидные (каждая сторона шестиугольника расположена к оси УНТ под углом, отличные от 0 и 90º). Так, ахиральные УНТ типа «кресла» характеризуют индексами (n,n), типа «зигзаг» - (n,0), хиральные - (n,m).

Многостенные нанотрубки. Многослойные углеродные нанотрубки (МСУНТ) - подвид углеродных нановолокон со структурой, образованной несколькими вложенными друг в друга однослойными углеродными нанотрубками (см. Рис.2). Внешний диаметр многослойных нанотрубок варьируется в широких пределах от нескольких нанометров до десятков нанометров.

Число слоев в МСУНТ чаще всего составляет не больше 10, но в отдельных случаях достигает нескольких десятков.

Иногда среди многослойных нанотрубок выделяют как особый вид двухслойные нанотрубки. Структура типа «русской матрёшки» (russian dolls) представляет собой совокупность коаксиально вложенных друг в друга цилиндрических трубок. Другая разновидность этой структуры представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведённых структур напоминает свиток (scroll). Для всех структур на рис. характерно значение расстояния между соседними графеновыми слоями, близкое к величине 0,34 нм, присущей расстоянию между соседними плоскостями кристаллического графита <#"128" src="doc_zip3.jpg" />


Русская матрешка Рулон Папье-маше


Углеродные нановолокна (УНВ) представляют собой класс таких материалов, в которых изогнутые графеновые слои или наноконусы сложены в форме одномерной нити, чья внутренняя структура может быть охарактеризована углом? между слоями графена и осью волокна. Одно из распространенных различий отмечается между двумя основными типами волокон: «Елочка», с плотно уложенными коническими графеновыми слоями и большими?, и «Бамбук», с цилиндрическими чашеподобными графеновыми слоями и малыми?, которые больше похожи на многослойные углеродные нанотрубки <#"228" src="doc_zip4.jpg" />


а - нановолокно "столбик монет";

б - нановолокно "елочной структуры" (стопка конусов, "рыбья кость");

в - нановолокно "стопка чашек" ("ламповые абажуры");

г - нанотрубка "русская матрешка";

д - бамбукообразное нановолокно;

е - нановолокно со сферическими секциями;

ж - нановолокно с полиэдрическими секциями

Выделение в отдельный подвид углеродных нанотрубок обусловлено тем, что их свойства заметно отличаются в лучшую сторону от свойств других типов углеродных нановолокон. Это объясняется тем, что графеновый слой, образующий стенку нанотрубки вдоль всей ее длины, имеет высокие прочность на разрыв, тепло- и электропроводность. В противоположность этому в углеродных нановолокнах при движении вдоль стенки встречаются переходы с одного графенового слоя на другой. Наличие межслоевых контактов и высокая дефектность структуры нановолокон существенно ухудшает их физические характеристики.


История


Трудно говорить об истории нанотрубок и нановолокон отдельно, ведь эти продукты часто сопутствуют друг другу при синтезе. Одним из первых данных о получении углеродных нановолокон, вероятно, является патент от 1889 на получение трубчатых форм углерода, образующихся при пиролизе смеси СН4 и Н2 в железном тигле Хьюзом и Чамберсом. Они использовали смесь метана и водорода для выращивания углеродных нитей путем пиролиза газа с последующим осаждением углерода. Говорить о получении этих волокон наверняка, стало возможно гораздо позже, когда появилась возможность изучить их структуру с помощью электронного микроскопа. Первое наблюдение углеродных нановолокон с помощью электронной микроскопии было сделано в начале 1950-х годов советскими учеными Радушкевичем и Лукьяновичем, которые опубликовали статью в советском Журнале физической химии, в которой показали полые графитовые волокна углерода, которые составляли 50 нанометров в диаметре. В начале 1970-х годов, японским исследователям Кояме и Эндо удалось получить углеродные волокна осаждением из газовой фазы (VGCF) с диаметром 1 мкм и длиной более 1 мм. Позднее, в начале 1980-х, Тиббетс в США и Бениссад во Франции продолжили совершенствовать процесс получения углеродных волокон (VGCF). В США, более глубокие исследования, посвященные синтезу и свойствам этих материалов для практического применения, проводились Р. Терри К. Бейкером и были мотивированы необходимостью подавлять рост углеродных нановолокон из-за постоянных проблем вызванных накоплением материала в различных коммерческих процессах, особенно в области переработки нефти. Первая попытка коммерциализации углеродных волокон выращенных из газовой фазы была предпринята японской компанией Nikosso в 1991 году под торговой маркой Grasker, в том же году Иджима опубликовал свою знаменитую статью, сообщающую об открытии углеродных нанотрубок <#"justify">Получение


В настоящее время, в основном, используются синтезы на основе пиролиза углеводородов и возгонки и десублимации графита.

Возгонка-десублимация графита может быть реализована в нескольких вариантах:

  • электродуговой способ,
  • лучевое нагревание (использование солнечных концентраторов или лазерного излучения),
  • лазерно-термический,
  • нагревание электронным или ионным пучком,
  • возгонка в плазме,
  • резистивное нагревание.

Многие из указанных вариантов имеют свои разновидности. Иерархия части вариантов электродугового способа приведена на схеме:


В настоящее время наиболее распространённым является метод термического распыления графитовых электродов в плазме дугового разряда. Процесс синтеза осуществляется в камере, заполненной гелием под давлением около 500 мм рт. ст. При горении плазмы происходит интенсивное термическое испарение анода, при этом на торцевой поверхности катода образуется осадок, в котором формируются нанотрубки углерода. Максимальное количество нанотрубок образуется тогда, когда ток плазмы минимален и его плотность около 100 А/см2. В экспериментальных установках напряжение между электродами составляет около 15-25 В, ток разряда несколько десятков ампер, расстояние между концами графитовых электродов 1-2 мм. В процессе синтеза около 90% массы анода осаждается на катоде. Образующиеся многочисленные нанотрубки имеют длину около 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца и собраны в цилиндрические пучки диаметром около 50 мкм.

Пучки нанотрубок регулярно покрывают поверхность катода, образую сотовую структуру. Содержание нанотрубок в углеродном осадке около 60%. Для разделения компонентов полученный осадок помещают в метанол и обрабатывают ультразвуком. В результате получается суспензия, которая после добавления воды подвергается разделению в центрифуге. Крупные частицы прилипают к стенкам центрифуги, а нанотрубки остаются плавающими в суспензии. Затем нанотрубки промывают в азотной кислоте и просушивают в газообразном потоке кислорода и водорода в соотношении 1:4 при температуре 7500 C в течение 5 минут. В результате такой обработки получается лёгкий пористый материал, состоящий из многочисленных нанотрубок со средним диаметром 20 нм и длиной 10 мкм. Пока максимальная достигнутая длина нановолокна - 1 см.


Пиролиз углеводородов


По выбору исходных реагентов и способам ведения процессов эта группа имеет значительно большее число вариантов, чем методы возгонки и десублимации графита. Она обеспечивает более четкое управление процессом образования УНТ, в большей степени подходит для крупномасштабного производства и позволяет производить не только сами углеродные наноматериалы, но и определенные структуры на подложках, макроскопические волокна, состоящие из нанотрубок, а также композиционные материалы, в частности, модифицированные углеродными УНТ углеродные волокна и углеродную бумагу, керамические композиты. С использованием недавно разработанной наносферной литографии удалось получить фотонные кристаллы из УНТ. Таким путем можно выделять УНТ определенного диаметра и длины.

К достоинствам пиролитического метода, кроме того, относится возможность его реализации для матричного синтеза, например с использованием пористых мембран из оксида алюминия или молекулярных сит. С помощью оксида алюминия удается получать разветвленные УНТ и мембраны из УНТ. Главными недостатками матричного метода являются высокая стоимость многих матриц, их малые размеры и необходимость применения активных реагентов и жестких условий для растворения матриц.

Чаще других для синтеза УНТ и УНВ используются процессы пиролиза трех углеводородов: метана, ацетилена и бензола, а также термическое разложение (диспропорционирование) СО. Метан, как и оксид углерода, не склонен к разложению при низких температурах (некаталитическое разложение метана начинается при ~900 оС), что позволяет синтезировать ОУНТ с относительно небольшим количеством примеси аморфного углерода. Оксид углерода не разлагается при низких температурах по другой причине: кинетической. Разница в поведении различных веществ видна на рис. 94.

К преимуществам метана перед другими углеводородами и оксидом углерода относится то, что его пиролиз с образованием УНТ или УНВ сочетается с выделением Н2 и может быть использован в уже действующих производствах Н2.


Катализаторы


Катализаторами процессов образования УНТ и УНВ служат Fe, Co и Ni; промоторами, которые вводятся в меньших количествах, выступают преимущественно Mo, W или Cr (реже - V, Mn, Pt и Pd), носителями катализаторов - нелетучие оксиды и гидроксиды металлов (Mg, Ca, Al, La, Si, Ti, Zr), твердые растворы, некоторые соли и минералы (карбонаты, шпинели, перовскиты, гидротальцит, природные глины, диатомиты), молекулярные сита (в частности, цеолиты), силикагель, аэрогель, алюмогель, пористый Si и аморфный C. При этом V, Cr, Mo, W, Mn и, вероятно, некоторые другие металлы в условиях проведения пиролиза находятся в виде соединений - оксидов, карбидов, металлатов и др.

В качестве катализаторов могут применяться благородные металлы (Pd, Ru, PdSe), сплавы (мишметалл, пермаллой, нихром, монель, нержавеющая сталь, Co-V, Fe-Cr, Fe-Sn, Fe-Ni-Cr, Fe-Ni-C, Co-Fe-Ni, твердый сплав Co-WC и др.), CoSi2 и CoGe2, LaNi5, MmNi5 (Mm - мишметалл), сплавы Zr и других гидридообразующих металлов. Напротив, Au и Ag ингибируют образование УНТ.

Катализаторы могут наноситься на кремний, покрытый тонкой оксидной пленкой, на германий, некоторые виды стекла и подложки из других материалов.

Идеальным носителем катализаторов считается пористый кремний, получаемый электрохимическим травлением монокристаллического кремния в растворе определенного состава. Пористый кремний может содержать микропоры (< 2 нм), мезопоры и макропоры (> 100 нм). Для получения катализаторов используют традиционные методы:

  • смешение (реже спекание) порошков;
  • напыление или электрохимическое осаждение металлов на подложку с последующим превращением сплошной тонкой пленки в островки наноразмеров (применяют также послойное напыление нескольких металлов;
  • химическое осаждение из газовой фазы;
  • окунание подложки в раствор;
  • нанесение суспензии с частицами катализатора на подложку;
  • нанесение раствора на вращающуюся подложку;
  • пропитка инертных порошков солями;
  • соосаждение оксидов или гидроксидов;
  • ионный обмен;
  • коллоидные методы (золь-гель процесс, метод обратных мицелл);
  • термическое разложение солей;
  • сжигание нитратов металлов.

Помимо описанных выше двух групп, разработано большое число других методов получения УНТ. Классифицировать их можно по используемым источникам углерода. Исходными соединениями служат: графит и другие формы твердого углерода, органические соединения, неорганические соединения, металлоорганические соединения. Графит может быть превращен в УНТ несколькими путями: интенсивным шаровым помолом с последующим высокотемпературным отжигом; электролизом расплавленных солей; расщеплением на отдельные графеновые листки и последующим самопроизвольным скручиванием этих листков. Аморфный углерод может быть превращен в УНТ при обработке в гидротермальных условиях. Из технического углерода (сажа) УНТ получались при высокотемпературной трансформации в присутствии катализаторов или без них, а также при взаимодействии с водяным паром под давлением. Нанотрубчатые структуры содержатся в продуктах вакуумного отжига (1000 оС) пленок алмазоподобного углерода в присутствии катализатора. Наконец, каталитическая высокотемпературная трансформация фуллерита С60 или его обработка в гидротермальных условиях также ведут к образованию УНТ.

Углеродные нанотрубки существуют в природе. Группа мексиканских исследователей обнаружила их в образцах нефти, извлеченных с глубины 5,6 км (Веласко-Сантос, 2003). Диаметр УНТ составлял от нескольких нанометров до десятков нанометров, длина достигала 2 мкм. Некоторые из них были заполнены различными наночастицами.


Очистка углеродных нанотрубок


Ни один из распространенных способов получения УНТ не позволяет выделить их в чистом виде. Примесями к НТ могут быть фуллерены, аморфный углерод, графитизированные частицы, частицы катализатора.

Применяют три группы методов очистки УНТ:

  1. разрушающие,
  2. неразрушающие,
  3. комбинированные.

Разрушающие методы используют химические реакции, которые могут быть окислительными или восстановительными и основаны на различиях в реакционной способности различных углеродных форм. Для окисления используют либо растворы окислителей, либо газообразные реагенты, для восстановления - водород. Методы позволяют выделять УНТ высокой чистоты, но связаны с потерями трубок.

Неразрушающие методы включают экстрагирование, флокуляцию и селективное осаждение, микрофильтрацию с перекрестным током, вытеснительную хроматографию, электрофорез, селективное взаимодействие с органическими полимерами. Как правило, эти методы малопроизводительны и неэффективны.


Свойства углеродных нанотрубок


Механические.Нанотрубки, как было сказано, являются на редкость прочным материалом, как на растяжение, так и на изгиб. Более того, под действием механических напряжений, превышающих критические, нанотрубки не "рвутся", а перестраиваются. Основываясь на таком свойстве нанотрубок как высокая прочность, можно утверждать, что они являются наилучшим материалом для троса космического лифта на данный момент. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали. Приведённый ниже график показывает сравнение однослойной нанотрубки и высокопрочной стали.



Трос космического лифта по подсчётам должен выдерживать механическое напряжение 62,5 ГПа

Диаграмма растяжения (зависимость механического напряжения ? от относительного удлинения ?)

Чтобы продемонстрировать существенное различие между самыми прочными на текущий момент материалами и углеродными нанотрубками, проведём следующий мысленный эксперимент. Представим, что, как это предполагалось ранее, тросом для космического лифта будет служить некая клиновидная однородная структура, состоящая из самых прочных на сегодняшний день материалов, то диаметр троса у GEO (geostationary Earth orbit) будет около 2 км и сузится до 1 мм у поверхности Земли. В этом случае общая масса составит 60*1010 тонн. Если бы в качестве материала использовались углеродные нанотрубки, то диаметр троса у GEO составил 0,26 мм и 0,15 мм у поверхности Земли, в связи с чем общая масса была 9,2 тонн. Как видно из вышеуказанных фактов, углеродное нановолокно - это как раз тот материал, который необходим при постройке троса, реальный диаметр которого составит около 0,75 м, чтобы выдержать также электромагнитную систему, использующуюся для движения кабины космического лифта.

Электрические.Вследствие малых размеров углеродных нанотрубок только в 1996 году удалось непосредственно измерить их удельное электрическое сопротивление четырёхконтактным способом.

На полированную поверхность оксида кремния в вакууме наносили золотые полоски. В промежуток между ними напыляли нанотрубки длиной 2-3 мкм. Затем на одну из выбранных для измерения нанотрубок наносили 4 вольфрамовых проводника толщиной 80 нм. Каждый из вольфрамовых проводников имел контакт с одной из золотых полосок. Расстояние между контактами на нанотрубке составляло от 0,3 до 1 мкм. Результаты прямого измерения показали, что удельное сопротивление нанотрубок может изменяться в значительных пределах - от 5,1*10-6 до 0,8 Ом/см. Минимальное удельное сопротивление на порядок ниже, чем у графита. Большая часть нанотрубок обладает металлической проводимостью, а меньшая проявляет свойства полупроводника с шириной запрещённой зоны от 0,1 до 0,3 эВ.

Французскими и российскими исследователями (из ИПТМ РАН, Черноголовка) было открыто ещё одно свойство нанотрубок, как сверхпроводимость. Они проводили измерения вольт-амперных характеристик отдельной однослойной нанотрубки диаметром ~1нм, свернутого в жгут большого числа однослойных нанотрубок, а также индивидуальных многослойных нанотрубок. Сверхпроводящий ток при температуре, близкой к 4К, наблюдался между двумя сверхпроводящими металлическими контактами. Особенности переноса заряда в нанотрубке существенно отличаются от тех, которые присущи обычным, трехмерным проводникам и, по-видимому, объясняются одномерным характером переноса.

Также де Гиром из Университета Лозанны (Швейцария) было обнаружено интересное свойство: резкое (около двух порядков величины) изменение проводимости при небольшом, на 5-10о, изгибе однослойной нанотрубки. Это свойство может расширить область применения нанотрубок. С одной стороны, нанотрубка оказывается готовым высокочувствительным преобразователем механических колебаний в электрический сигнал и обратно (фактически это - телефонная трубка длиной в несколько микрон и диаметром около нанометра), а, с другой стороны, это - практически готовый датчик мельчайших деформаций. Такой датчик мог бы найти применение в устройствах, контролирующих состояние механических узлов и деталей, от которых зависит безопасность людей, например, пассажиров поездов и самолетов, персонала атомных и тепловых электростанций и т. п.

Капиллярные. Как показали эксперименты, открытая нанотрубка обладает капиллярными свойствами. Чтобы открыть нанотрубку, надо удалить верхнюю часть - крышечку. Один из способов удаления заключается в отжиге нанотрубок при температуре 8500 C в течение нескольких часов в потоке углекислого газа. В результате окисления около 10% всех нанотрубок оказываются открытыми. Другой способ разрушения закрытых концов нанотрубок - выдержка в концентрированной азотной кислоте в течение 4,5 часов при температуре 2400 C. В результате такой обработки 80% нанотрубок становятся открытыми.

Первые исследования капиллярных явлений показали, что жидкость проникает внутрь канала нанотрубки, если её поверхностное натяжение не выше 200 мН/м. Поэтому для ввода каких-либо веществ внутрь нанотрубок используют растворители, имеющие низкое поверхностное натяжение. Так, например, для ввода в канал нанотрубки некоторых металлов используют концентрированную азотную кислоту, поверхностное натяжение которой невелико (43 мН/м). Затем проводят отжиг при 4000 C в течение 4 часов в атмосфере водорода, что приводит к восстановлению металла. Таким образом были получены нанотрубки, содержащие никель, кобальт и железо.

Наряду с металлами углеродные нанотрубки могут заполняться газообразными веществами, например водородом в молекулярном виде. Эта способность имеет практическое значение, ибо открывает возможность безопасного хранения водорода, который можно использовать в качестве экологически чистого топлива в двигателях внутреннего сгорания. Также ученые смогли поместить внутрь нанотрубки целую цепочку из фуллеренов с уже внедренными в них атомами гадолиния(см. Рис.5).


Рис. 5. Внутри C60 внутри однослойной нанотрубки


Капиллярные эффекты и заполнение нанотрубок

нанотрубка углеродный пиролиз электродуговой

Вскоре после открытия углеродных нанотрубок внимание исследователей привлекла возможность заполнения нанотрубок различными веществами, что не только представляет научный интерес, но также имеет большое значение для прикладных задач, поскольку нанотрубку, заполненную проводящим, полупроводящим или сверхпроводящим материалом, можно рассматривать как наиболее миниатюрный из всех известных к настоящему времени элементов микроэлектроники. Научный интерес к данной проблеме связан с возможностью получения экспериментально обоснованного ответа на вопрос: при каких минимальных размерах капиллярные явления сохраняют свои особенности, присущие макроскопическим объектам? Впервые данная проблема рассмотрена в задачи о втягивании молекулы НР внутрь нанотрубок под действием поляризационных сил. При этом показано, что капиллярные явления, приводящие к втягиванию жидкостей, смачивающих внутреннюю поверхность трубки, внутрь капилляра, сохраняют свою природу при переходе к трубкам нанометрового диаметра.

Капиллярные явления в углеродных нанотрубках впервые осуществлены экспериментально в работе, где наблюдался эффект капиллярного втягивания расплавленного свинца внутрь нанотрубок. В этом эксперименте электрическая дуга, предназначенная для синтеза нанотрубок зажигалась между электродами диаметром 0,8 и длиной 15 см при напряжении 30 В и токе 180 - 200 А. Образующийся на поверхности катода в результате термического разрушения поверхности анода слой материала высотой 3-4 см извлекался из камеры и выдерживался в течение 5 ч при Т = 850° С в потоке углекислого газа. Эта операция, в результате которой образец потерял около 10% массы, способствовала очистке образца от частиц аморфного графита и открытию нанотрубок, находящихся в осадке. Центральная часть осадка, содержащего нанотрубки, помещалась в этанол и обрабатывалась ультразвуком. Диспергированный в хлороформе продукт окисления наносился на углеродную ленту с отверстиями для наблюдения с помощью электронного микроскопа. Как показали наблюдения, трубки, не подвергавшиеся обработке, имели бесшовную структуру, головки правильной формы и диаметр от 0,8 до 10 нм. В результате окисления около 10% нанотрубок оказались с поврежденными шапочками, а часть слоев вблизи вершины была содрана. Предназначенный для наблюдений образец, содержащий нанотрубки, заполнялся в вакууме каплями расплавленного свинца, которые получали в результате облучения металлической поверхности электронным пучком. При этом на внешней поверхности нанотрубок наблюдались капельки свинца размером от 1 до 15 нм. Нанотрубки отжигались в воздухе при Т = 400°С (выше температуры плавления свинца) в течение 30 мин. Как показывают результаты наблюдений, выполненных с помощью электронного микроскопа, часть нанотрубок после отжига оказалась заполненной твердым материалом. Аналогичный эффект заполнения нанотрубок наблюдался при облучении головок трубок, открывающихся в результате отжига, мощным электронным пучком. При достаточно сильном облучении материал вблизи открытого конца трубки плавится и проникает внутрь. Наличие свинца внутри трубок установлено методами рентгеновской дифракции и электронной спектроскопии. Диаметр самого тонкого свинцового провода составлял 1,5 нм. Согласно результатам наблюдений число заполненных нанотрубок не превышало 1%.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Считается, что первооткрывателем углеродных нанотрубок является сотрудник японской корпорации NEC Сумио Ииджима, который в 1991 году наблюдал структуры многослойных нанотрубок при изучении под электронным микроскопом осадков, которые образовывались в процессе синтеза молекулярных форм чистого углерода, имеющего клеточную структуру.

Классификация

Основная классификация нанотрубок проводится по количеству составляющих их слоев.

Однослойные нанотрубки (single-walled nanotubes, SNWTs) - простейший вид нанотрубок. Большинство из них имеют диаметр около 1 нм при длине, которая может быть во много тысяч раз больше. Структуру однослойных нанотрубок можно представить как «обертывание» гексагональной сетки графита (графена), основу которой составляют шестиугольники с расположенными в вершинах углов атомами углерода, в бесшовный цилиндр. Верхние концы трубок закрыты полусферическими крышечками, каждый слой которых составлен из шести- и пятиугольников, напоминающих структуру половины молекулы фуллерена.

Рисунок 1. Графическое изображение однослойной нанотрубки

Многослойные нанотрубки (multi-walled nanotubes, MWNTs) состоят из нескольких слоев графена, сложенных в форме трубки. Расстояние между слоями равно 0.34 нм, то есть такое же, как и между слоями в кристаллическом графите.

Существуют две модели, использующиеся для описания их структуры. Многослойные нанотрубки могут представлять собой несколько однослойных нанотрубок, вложенных одна в другую (так называемая «матрешка»). В другом случае, один «лист» графена оборачивается несколько раз вокруг себя, что похоже на прокрутку пергамента или газеты (модель «пергамента»).

Рисунок 2. Графическое изображение многослойной нанотрубки (модель «матрешка»)

Методы синтеза

Наиболее распространенными методами синтеза нанотрубок являются электродуговой метод, лазерная абляция и химическое осаждение из газовой фазы (CVD).

Дуговой разряд (Arc discharge) — сущность этого метода состоит в получении углеродных нанотрубок в плазме дугового разряда, горящей в атмосфере гелия, на технологических установках для получения фуллеренов. Однако здесь используются другие режимы горения дуги: низкие плотности тока дугового разряда, более высокое давление гелия (~ 500 Торр), катоды большего диаметра.

Для увеличения выхода нанотрубок в продуктах распыления в графитовый стержень вводится катализатор (смеси металлов группы железа), изменяется давление инертного газа и режима распыления.

В катодном осадке содержание нанотрубок достигает 60%. Образующиеся нанотрубки длиной до 40 мкм растут от катода перпендикулярно его поверхности и объединяются в цилиндрические пучки диаметром около 50 км.

Лазерная абляция (Laser ablation)

Этот метод был изобретен Ричардом Смалли и сотрудниками Rice University» и основан на испарении графитовой мишени в высокотемпературной реакторе. Нанотрубки появляются на охлажденной поверхности реактора как конденсат испарения графита. Водоохлаждаемая поверхность может быть включена в систему сбора нанотрубок.

Выход продукта в этом методе - около 70%. С его помощью получают преимущественно однослойные углеродные нанотрубки с контролируемым посредством температуры реакции диаметром. Однако стоимость данного метода намного дороже остальных.

Химическое осаждение из газовой фазы (Chemical vapor deposition, CVD)

Метод каталитического осаждения паров углерода был выявлен еще в 1959 году, однако до 1993 года никто не предполагал, что в этом процессе можно получить нанотрубки.

В процессе этого метода готовится подложка со слоем катализатора - частиц металла (чаще всего никеля, кобальта, железа или их комбинаций). Диаметр нанотрубок, выращенных таким способом, зависит от размера металлических частиц.

Подложка нагревается примерно до 700 оС. Для инициации роста нанотрубок в реактор вводят два типа газов: технологический газ (например, аммиак, азот, водород и т. д.) и углеродосодержащий газ (ацитилен, этилен, этанол, метан и т. д.). Нанотрубки начинают расти на участках металлических катализаторов.

Этот механизм является наиболее распространенным коммерческим методом производства углеродных нанотрубок. Среди других методов получения нанотрубок CVD наиболее перспективен в промышленных масштабах благодаря наилучшему соотношению в плане цены на единицу продукции. Кроме того, он позволяет получать вертикально ориентированные нанотрубки на желаемом субстрате без дополнительного сбора, а также контролировать их рост посредством катализатора.

Области применения

Углеродные нанотрубки вместе с фуллеренами и мезопористыми углеродными структурами образуют новый класс углеродных наноматериалов, или углеродных каркасных структур, со свойствами, которые значительно отличаются от других форм углерода, таких как графит и алмаз. Однако наиболее перспективными их них являются именно нанотрубки.

Интересуетесь бизнесом в области наноматериалов? Тогда Вас могут заинтересовать

Еще одним классом кластеров были удлиненные цилиндрические углеродные образования, которые позднее, после выяснения их структуры, назвали "углеродными нанотрубками " (УНТ). УНТ являются большими, иногда даже сверхбольшими (свыше 10 6 атомов) молекулами, построенными из атомов углерода.

Типичная структурная схема однослойной УНТ и результат компьютерного расчета ее молекулярных орбиталей показаны на рис. 3.1. В вершинах всех шестиугольников и пятиугольников, изображенных белыми линиями, расположены атомы углерода в состоянии sp 2 -гибридизации. Для того, чтобы структура каркаса УНТ была хорошо видна, атомы углерода здесь не показаны. Но их не трудно себе представить. Серым тоном показан вид молекулярных орбиталей боковой поверхности УНТ.

Рис 3.1

Теория показывает, что структуру боковой поверхности однослойной УНТ можно представить себе как свернутый в трубку один слой графита. Понятно, что свертывать этот слой можно лишь в тех направлениях, при которых достигается совмещение гексагональной решетки самой с собой при замыкании цилиндрической поверхности. Поэтому УНТ имеют лишь определенный набор диаметров и классифицируются по векторам, указывающим направление свертывания гексагональной решетки. От этого зависят как внешний вид, так и вариации свойств УНТ. Три типичных варианта показаны на рис.3.2.

Набор возможных диаметров УНТ перекрывает диапазон от несколько меньше 1 нм до многих десятков нанометров. А длина УНТ может достигать десятков микрометров. Рекордные по длине УНТ уже превзошли границу в 1 мм.

Достаточно длинные УНТ (когда их длина намного больше диаметра) можно рассматривать как одномерный кристалл. На них можно выделить "элементарную ячейку", которая многократно повторяется вдоль оси трубки. И это отражается на некоторых свойствах длинных углеродных нанотрубок.

В зависимости от вектора свертывания графитового слоя (специалисты говорят: "от хиральности ") нанотрубки могут быть как проводниками, так и полупроводниками. УНТ так называемой "седловой" структуры всегда имеют довольно высокую, "металлическую" электропроводность.


Рис. 3.2

Разными могут быть и "крышки", замыкающие УНТ на торцах. Они имеют форму "половинок" разных фуллеренов. Основные их варианты показаны на рис. 3.3.

Рис. 3.3 Основные варианты "крышек" однослойной УНТ

Существуют также и многослойные УНТ . Некоторые из них похожи на графитовый слой, свернутый в свиток. Но большинство состоит из вставленных одна в другую однослойных трубок, связанных между собой силами ван дер Ваальса. Если однослойные УНТ практически всегда закрыты крышками, то многослойные УНТ бывают и частично открытыми. На них наблюдается обычно намного больше мелких дефектов структуры, чем на однослойных УНТ. Поэтому для применений в электронике преимущество пока отдают последним.

УНТ вырастают не только прямолинейными, но и криволинейными, согнутыми с образованием "колена", и даже полностью свернутыми в виде подобия тора. Нередко несколько УНТ прочно соединены между собой и образуют "жгуты".

Материалы, используемые для нанотрубок

Развитие методов синтеза углеродных нанотрубок (УНТ) шло по пути снижения температур синтеза. После создания технологии получения фуллеренов было обнаружено, что при электродуговом испарении графитовых электродов наряду с образованием фуллеренов образуются протяженные цилиндрические структуры. Микроскопист Сумио Ииджима, используя просвечивающий электронный микроскоп (ПЭМ), первым идентифицировал эти структуры как нанотрубки. К высокотемпературным методам получения УНТ относятся электродуговой метод. Если испарить графитовый стержень (анод) в электрической дуге, то на противоположном электроде (катоде) образуется жесткий углеродный нарост (депозит) в мягкой сердцевине которого содержатся многостенные УНТ с диаметром 15-20 нм и длиной более 1 мкм.

Формирование УНТ из фуллереновой сажи при высокотемпературном тепловом воздействии на сажу впервые наблюдали Оксфордская и Швейцарская группы. Установка для электродугового синтеза металлоемка, энергозатратна, но универсальна для получения различных типов углеродных наноматериалов. Существенной проблемой является неравновесность процесса при горении дуги. Электродуговой метод в свое время пришел на смену метода лазерного испарения (абляции) лучом лазера. Установка для абляции представляет собой обычную печь с резистивным нагревом, дающую температуру 1200°С. Чтобы получить в ней более высокие температуры, достаточно поместить в печь мишень из углерода и направить на нее лазерный луч, попеременно сканируя всю поверхность мишени. Так группа Смолли, используя дорогостоящие установки с короткоимпульсным лазером, получила в 1995 г. нанотрубки, «значительно упростив» технологию их синтеза.

Однако, выход УНТ оставался низким. Введение в графит небольших добавок никеля и кобальта (по 0.5 ат.%) позволило увеличить выход УНТ до 70-90%. С этого момента начался новый этап в представлении о механизме образования нанотрубок. Стало очевидным, что металл является катализатором роста. Так появились первые работы по получению нанотрубок низкотемпературным методом -- методом каталитического пиролиза углеводородов (CVD), где в качестве катализатораиспользовались частицы металла группы железа. Один из вариантов установки по получению нанотрубок и нановолокон CVD методом представляет собой реактор, в который подается инертный газ-носитель, уносящий катализатор и углеводород в зону высоких температур.

Упрощенно механизм роста УНТ заключается в следующем. Углерод, образующийся при термическом разложении углеводорода, растворяется в наночастице металла. При достижении высокой концентрации углерода в частице на одной из граней частицы-катализатора происходит энергетически выгодное «выделение» избыточного углерода в виде искаженной полуфулереновой шапочки. Так зарождается нанотрубка. Разложившийся углерод продолжает поступать в частицу катализатора, и для сброса избытка его концентрации в расплаве нужно постоянно избавляться от него. Поднимающаяся полусфера (полуфуллерен) с поверхности расплава увлекает за собой растворенный избыточный углерод, атомы которого вне расплава образуют связь С-С, представляющую собой цилиндрический каркас-нанотрубку.

Температура плавления частицы в наноразмерном состоянии зависит от ее радиуса. Чем меньше радиус, тем ниже температура плавления, вследствие эффекта Гиббса-Томпсона. Поэтому, наночастицы железа, с размером порядка 10 нм находятся в расплавленном состоянии ниже 600°С. На данный момент осуществлен низкотемпературный синтез УНТ методом каталитического пиролиза ацетилена в присутствии частиц Fe при 550°С. Снижение температуры синтеза имеет и негативные последствия. При более низких температурах получаются УНТ с большим диаметром (около 100 нм) и сильно дефектной структурой типа «бамбук» или «вложенные наноконусы». Полученные материалы состоят только из углерода, но к экстраординарным характеристикам (например, модуль Юнга) наблюдаемым у одностенных углеродных нанотрубок, получаемых методом лазерной абляции или электродуговым синтезом, они даже близко не приближаются.