Генетическая связь между углеводами, спиртами, альдегидами и карбоновыми кислотами. Учительские университеты

Тажибаева Асемгуль Исинтаевна

Учитель Каменнобродской средней школы

Урок химии в 11 классе

Тема урока:Генетическая связь между углеводородами,спиртами,альдегидами,спиртами,карбоновыми кислотами.

Тип урока: урок обобщения знаний.

Цели урока: закрепить, обобщить и систематизировать знания по кислородсодержащим органическим соединениям, в том числе и на основе генетической связи между классами этих веществ. Закрепить умения предсказывать химические свойства незнакомых органических веществ, опираясь на знание функциональных групп. Развивать у учащихся доказательную речь, умения использовать химическую терминологию, проводить, наблюдать и описывать химический эксперимент. Воспитывать потребности в знаниях о тех веществах, с которыми мы соприкасаемся в жизни.

Методы: словесный, наглядный, практический, проблемно-поисковый, контроль знаний.

Реактивы: ацетилсалициловая кислота (аспирин), вода, хлорид железа(III), раствор глюкозы, универсальный индикатор, раствор сульфата меди (II), раствор гидроксида натрия, яичный белок, этанол, бутанол-1, уксусная кислота, стеариновая кислота.

Оборудование: компьютер, экран, проектор, таблица «Классификация кислородсодержащих органических веществ», опорный конспект «Функциональная группа определяет свойства вещества», ступка с пестиком, стеклянная палочка, спиртовка, пробиркодержатель, воронка, фильтр, стаканы, штатив с пробирками, пипетка, мерный цилиндр на 10 мл.

I. Организационный момент. Сегодня на уроке:

1) Вы закрепите умения предсказывать химические свойства незнакомых органических веществ, опираясь на знание функциональных групп.

2) Вы узнаете, какие известные вам функциональные группы входят в состав самого знаменитого жаропонижающего средства.

3)Вы обнаружите функциональные группы в веществе сладкого вкуса, который применяют в медицине как питательное вещество и компонент кровозамещающих жидкостей.

4) Вы увидите, как можно получить чистое серебро.

5) Мы поговорим о физиологическом воздействии этилового спирта.

6) Мы обсудим последствия употребления алкогольных напитков беременными женщинами.

7) Вы приятно удивитесь: оказывается, вы знаете уже так много!

II. Повторение и обобщение полученных знаний учащихся. 1. Классификация кислородсодержащих органических соединений.

Обобщение материала начинаем с классификации кислородсодержащих органических веществ. Для этого мы воспользуемся таблицей «Классификация кислородсодержащих органических соединений». В ходе фронтальной работы повторим кислородсодержащие функциональные группы.

В органической химии существуют три важнейшие функциональные группы, включающие атомы кислорода: гидроксильная, карбонильная и карбоксильная. Последнюю можно рассматривать как сочетание двух предыдущих. В зависимости от того, с какими атомами или группами атомов связаны данные функциональные группы, кислородсодержащие вещества делятся на спирты, фенолы, альдегиды, кетоны и карбоновые кислоты.

Рассмотрим эти функциональные группы и их влияние на физические и химические свойства веществ.

Просмотр видиофрагмента.

Вы уже знаете, что это не единственно возможный признак классификации. Одинаковых функциональных групп в молекуле может быть несколько, и обратите внимание к соответствующей строке таблицы.

Следующая строка отражает классификацию веществ по типу радикала, связанного с функциональной группой. Хочется обратить внимание на то, что в отличие от спиртов, альдегидов, кетонов и карбоновых кислот гидроксиарены выделяют в отдельный класс соединений – фенолы.

Число функциональных групп и строение радикала определяют общую молекулярную формулу веществ. В данной таблице они приведены только для предельных представителей классов с одной функциональной группой.

Все классы соединений, «уместившиеся» в таблицу, являются монофункциональными, т. е. несут только одну кислородсодержащую функцию.

Для закрепления материала по классификации и номенклатуре кислородсодержащих веществ привожу несколько формул соединений и прошу учащихся определить «их место» в приведенной классификации и дать название.

формула

Название

Класс вещества

Пропиновая кислота

Непредельная, одноосновная кислота

Бутандиол-1,4

Предельный, двухатомный спирт

1,3-Дигидроксибензол

Двухатомный фенол

3-Метилбутаналь

Предельный альдегид

Бутен-3-он-2

Непредельный кетон

2-Метилбутанол-2

Предельный, одноатомный спирт

Взаимосвязь строения и свойств кислородсодержащих соединений.

Природа функциональной группы оказывает существенное влияние на физические свойства веществ данного класса и во многом определяет его химические свойства.

В понятие «физические свойства» входит агрегатное состояние веществ.

Агрегатное состояние линейных соединений разных классов:

Число атомов C в молекуле

Спирты

Альдегиды

Карбоновые кислоты

Гомологический ряд альдегидов начинается с газообразного при комнатной температуре вещества - формальдегида, а среди одноатомных спиртов и карбоновых кислот газов нет. С чем это связано?

Молекулы спиртов и кислот дополнительно связаны друг с другом водородными связями.

Учитель просит учащихся сформулировать определение «водородная связь» (это межмолекулярная связь между кислородом одной молекулы и гидроксильным водородом другой молекулы) , корректирует его и при необходимости диктует для записи: химическая связь между электронодефицитным атомом водорода и электроноизбыточным атомом элемента с большой электроотрицательностью (F , O , N ) называется водородной.

А сейчас сравните температуры кипения (°C) первых пяти гомологов веществ трех классов.

Число атомов C в молекуле

Спирты

Альдегиды

Карбоновые кислоты

Что можно сказать после рассмотрения таблиц?

В гомологических рядах спиртов и карбоновых кислот отсутствуют газообразные вещества и температуры кипения веществ высокие. Это связано с наличием водородных связей между молекулами. За счет водородных связей молекулы оказываются ассоциированными (как бы сшитыми), поэтому, чтобы молекулы стали свободными и приобрели летучесть, необходимо затратить дополнительную энергию на разрыв этих связей.

Что можно сказать о растворимости спиртов, альдегидов и карбоновых кислот в воде? (Демонстрация растворимости в воде спиртов – этилового, пропилового, бутилового и кислот – муравьиной, уксусной, пропионовой, масляной и стеариновой. Демонстрируется также раствор муравьиного альдегида в воде.)

При ответе используется схема образования водородных связей между молекулами кислоты и воды, спиртов, кислот.

Необходимо отметить, что с увеличением молекулярной массы растворимость в воде спиртов и кислот уменьшается. Чем больше углеводородный радикал в молекуле спирта или кислоты, тем труднее группе OH держать молекулу в растворе за счет образования слабых водородных связей.

3. Генетическая связь между различными классами кислородсодержащих соединений.

Изображаю на доске формулы ряда соединений, содержащих по одному атому углерода:

CH 4 → CH 3 OH → HCOH → HCOOH→ CO 2

Почему именно в такой последовательности они изучаются в курсе органической химии?

Как изменяется степень окисления атома углерода?

Учащиеся диктуют строчку: -4, -2, 0, +2, +4

Теперь становится ясно, что каждое последующее соединение является все более окисленной формой предыдущего. Отсюда очевидно, что продвигаться по генетическому ряду слева направо следует с помощью реакций окисления, а в обратном направлении – с использованием процессов восстановления.

Не выпадают ли кетоны из этого «круга родственников»? Конечно, нет. Их предшественники – вторичные спирты.

Химические свойства каждого класса веществ были подробно рассмотрены на соответствующих уроках. Для обобщения этого материала я предложила в качестве домашней работы задания по взаимопревращениям в несколько необычной форме.

1. Соединение с молекулярной формулой C 3 H 8 O подвергли дегидрированию, в результате чего получили продукт состава C 3 H 6 O . Это вещество вступает в реакцию «серебряного зеркала», образуя соединение C 3 H 6 O 2 . При действии на последнее вещество гидроксидом кальция получили вещество, используемое в качестве пищевой добавки под кодом E 282. Оно препятствует росту плесени в хлебобулочных и кондитерских изделиях и, кроме того, содержится в таких продуктах, как швецарский сыр. Определите формулу добавки E 282, напишите уравнения упомянутых реакций и назовите все органические вещества.

Решение :

CH 3 – CH 2 – CH 2 – OH → CH 3 – CH 2 – COH + H 2 (кат. – Cu, 200-300 °C)

CH 3 – CH 2 – COH + Ag 2 O → CH 3 – CH 2 – COOH + 2Ag (упрощенный вид уравнения, аммиачный раствор оксида серебра)

2CH 3 – CH 2 – COOH + Сa(OH) 2 → (CH 3 – CH 2 – COO) 2 Ca + 2H 2 O.

Ответ: пропионат кальция.

2. Соединение состава C 4 H 8 Cl 2 с неразветленным углеродным скелетом нагрели с водным раствором NaOH и получили органическое вещество, которое при окислении Cu(OH) 2 превратилось в C 4 H 8 O 2 . Определите строение исходного соединения.

Решение: если 2 атома хлора находятся у разных атомов углерода, то при обработке щелочью мы получили бы двухатомный спирт, который не окислялся бы Cu(OH) 2 . Если 2 атома хлора находились бы при одном атоме углерода в середине цепи, то при обработке щелочью получили бы кетон, который не окисляется Cu(OH) 2. Тогда, искомое соединение – 1,1-дихлорбутан.

CH 3 – CH 2 – CH 2 – CHCl 2 + 2NaOH → CH 3 – CH 2 – CH 2 – COH + 2NaCl + H 2 O

CH 3 – CH 2 – CH 2 – COH + 2Cu(OH) 2 → CH 3 – CH 2 – CH 2 – COOH + Cu 2 O + 2H 2 O

3. При нагревании 19,2 г натриевой соли предельной одноосновной кислоты с гидроксидом натрия образовалось 21,2 г карбоната натрия. Назовите кислоту.

Решение:

При нагревании происходит декарбоксилирование:

R-COONa + NaOH → RH + Na 2 CO 3

υ(Na 2 CO 3) = 21,2 / 106 = 0,2 моль

υ(R-COONa) = 0,2 моль

М(R-COONa) = 19,2 / 0,2 = 96 г/моль

М(R-COOH) = М(R-COONa) – М(Na) + M(H) = 96-23+1= 74 г/моль

В соответствии с общей формулой предельных одноосновных карбоновых кислот для определения количества атомов углерода надо решить уравнение:

12n + 2n + 32= 74

Ответ: пропионовая кислота.

Для закрепления знаний о химических свойствах кислородсодержащих органических веществ, выполним тест.

1 вариант

    Предельным одноатомным спиртам соответствуют формулы:
    А)
    CH 2 O
    Б)
    C 4 H 10 O
    В)
    C 2 H 6 O
    Г)
    CH 4 O
    Д)
    C 2 H 4 O 2

    В ней - сочетанье двух начал,
    Одно – в рождении зеркал.
    Конечно, не для созерцанья,
    А для науки пониманья.
    …И в царстве леса встречается она,
    Меньшие братья здесь ее друзья,
    Им сердце отдано сполна…

    варианты:
    А) пикриновая кислота
    Б) муравьиная кислота
    В) уксусная кислота
    Г) карбоксильная группа
    Д) бензойная кислота

    Этанол реагирует с веществами:
    А)
    NaOH
    Б)
    Na
    В)
    HCl
    Г)
    CH 3 COOH
    Д)
    FeCl 3

    Качественная реакция на фенолы - это реакция с
    А)
    NaOH
    Б)
    Cu(OH) 2
    В)
    CuO
    Г)
    FeCl 3
    Д)
    HNO 3

    Этаналь реагирует с веществами
    А) метанолом
    Б) водородом
    В) аммиачным раствором оксида серебра
    Г) гидроксидом меди (II)
    Д) хлороводородом

2 вариант

    Альдегиды можно получить
    А) окислением алкенов
    Б) окислением спиртов
    В) гидратацией алкинов
    Г) при нагревании кальциевых солей карбоновых кислот
    Д) гидратацией алкенов

    Функциональной группой спиртов является
    А)
    COH
    Б)
    OH
    В)
    COOH
    Г)
    NH 2
    Д)
    NO 2

    2-метилбутанол-2
    А) непредельный спирт
    Б) предельный спирт
    В) одноатомный спирт
    Г) третичный спирт
    Д) альдегид

    Вы наблюдали реакцию
    А) на многоатомные спирты
    Б) окисление спирта
    В) взаимодействие фенола с хлоридом железа (III)
    Г) «серебряного зеркала»
    Д) «медного зеркала»

    Уксусная кислота реагирует с веществами
    А) водородом
    Б) хлором
    В) пропанолом
    Г) гидроксидом натрия
    Д) метаналем

Ответы учащиеся оформляют в таблице:

1, 2 вар.

Если соединить правильные ответы сплошной линией, получается цифра «5».

Групповая работа учащихся. Задание для 1 группы

Цели:

Реактивы и оборудование: ацетилсалициловая кислота (аспирин), вода, хлорид железа(III); ступка с пестиком, стеклянная палочка, спиртовка, пробиркодержатель, воронка, фильтр, стаканы, штатив с пробирками, пипетка, мерный цилиндр на 10 мл.

Опыт 1. Доказательство отсутствия фенольного гидроксила в ацетилсалициловой кислоте (аспирине).

В пробирку помещают 2-3 крупинки ацетилсалициловой кислоты, добавляют 1 мл воды и энергично встряхивают. К полученному раствору прибавляют 1-2 капли раствора хлорида железа(III). Что наблюдаете? Сделайте выводы.

Фиолетовое окрашивание не появляется. Следовательно, в ацетилсалициловой кислоте НООС-С 6 Н 4 -О-СО-СН 3 отсутствует свободная фенольная группа, так как это вещество – сложный эфир, образованный уксусной и салициловой кислотами.

Опыт 2. Гидролиз ацетилсалициловой кислоты.

В пробирку помещают измельченную таблетку ацетилсалициловой кислоты и добавляют 10 мл воды. Доводят содержимое пробирки до кипения и кипятят в течение 0,5-1 мин. Профильтруйте раствор. Затем к полученному фильтрату прибавляют 1-2 капли раствора хлорида железа(III). Что наблюдаете? Сделайте выводы.

Запишите уравнение реакции:

Оформите работу, заполнив таблицу, в которой есть следующие графы: выполняемая операция, реактив, наблюдения, вывод.

Появляется фиолетовое окрашивание, что указывает на выделение салициловой кислоты, содержащей свободную фенольную группу. Как сложный эфир ацетилсалициловая кислота легко гидролизуется при кипячении с водой.

Задание для 2 группы

    1. Рассмотрите структурные формулы веществ, назовите функциональные группы.

2. Проведите лабораторную работу «Обнаружение функциональных групп в молекуле глюкозы».

Цели: закрепить знания учащихся о качественных реакциях органических соединений, отработать навыки экспериментального определения функциональных групп.

Реактивы и оборудование: раствор глюкозы, универсальный индикатор, раствор сульфата меди (II), раствор гидроксида натрия, спиртовка, пробиркодержатель, спички, мерный цилиндр на 10 мл.

2.1. Налейте в пробирку 2 мл раствора глюкозы. С помощью универсального индикатора сделайте вывод о наличии или отсутствии карбоксильной группы.

2.2. Получите гидроксид меди (II): влейте в пробирку 1 мл сульфата меди (II) и добавьте к нему гидроксид натрия. К полученному осадку прилейте 1 мл глюкозы, встряхните. Что наблюдаете? Для каких функциональных групп характерна данная реакция?

2.3. Полученную в опыте № 2 смесь нагрейте. Отметьте изменения. Для какой функциональной группы характерна данная реакция?

2.4. Оформите работу, заполнив таблицу, в которой есть следующие графы: выполняемая операция, реактив, наблюдения, вывод.

Демонстрационный опыт. Взаимодействие раствора глюкозы с аммиачным раствором оксида серебра.

Результаты работы:

Карбоксильная группа отсутствует, т.к. раствор имеет нейтральную реакцию на индикатор;

Осадок гидроксида меди (II) растворяется и появляется ярко-синее окрашивание, характерное для многоатомных спиртов;

При нагревании этого раствора выпадает желтый осадок гидроксида меди (I), который при дальнейшем нагревании краснеет, что показывает наличие альдегидной группы.

Вывод. Таким образом, молекула глюкозы содержит карбонильную и несколько гидроксильных групп и представляет собой альдегидоспирт.

Задание для 3 группы

Физиологическое действие этанола

1. Каково действие этанола на живые организмы?

2. Используя имеющиеся на столе оборудование и реактивы, продемонстрируйте влияние этанола на живые организмы. Прокомментируйте увиденное.

Цель опыта: убедить учащихся, что спирт денатурирует белки, необратимо нарушает их структуру и свойства.

Оборудование и реактивы: штатив с пробирками, пипетка, мерный цилиндр на 10 мл, яичный белок, этанол, вода.

Ход опыта: в 2 пробирки налейте по 2 мл яичного белка. В одну добавить 8 мл воды, в другую – столько же этанола.

В первой пробирке белок растворяется, хорошо усваивается организмом. Во второй пробирке образуется плотный белый осадок – в спирте белки не растворяются, спирт отнимает у белков воду. В результате этого нарушаются структура и свойства белка, его функции.

3. Расскажите о влиянии этилового спирта на различные органы и системы органов человека.

Расскажите о последствиях употребления алкогольных напитков беременным женщинам.

Выступления учащихся.

Издревле человеку известно большое число ядовитых веществ, все они отличаются пи силе воздействия на организм. Среди них выделяется вещество, которое известно в медицине как сильный протоплазматический яд, – это этиловый спирт. Смертность от алкоголизма превышает число смертельных случаев, вызываемых всеми инфекционными заболеваниями вместе взятыми.

Обжигая слизистую оболочку полости рта, глотки, пищевода, он поступает в желудочно-кишечный тракт. В отличие от многих других веществ спирт быстро и полностью всасывается в желудке. Легко преодолевая биологические мембраны, примерно через час он достигает максимальной концентрации в крови.

Молекулы спирта быстро проникают через биологические мембраны в кровь по сравнению с молекулами воды. Беспрепятственно преодолеть биологические мембраны молекулам этилового спирта позволяют их малый размер, слабая поляризация, образование водородных связей с молекулами воды, хорошая растворимость спирта в жирах.

Быстро всасываясь в кровь, хорошо растворяясь в межклеточной жидкости, спирт поступает во все клетки организма. Учеными установлено, что, нарушая функции клеток, он вызывает их гибель: при употреблении 100 г пива погибает около 3000 клеток мозга, 100 г вина – 500, 100 г водки – 7500, соприкосновение эритроцитов с молекулами спирта приводит к свертыванию кровяных клеток.

В печени происходит обезвреживание ядовитых веществ, поступивших в кровь. Этот орган врачи называют мишенью для алкоголя, так как 90 % этанола обезвреживается именно в нем. В печени происходят химические процессы окисления этилового спирта.

Вспоминаем с учащимися этапы процесса окисления спирта:

Этиловый спирт окисляется до конечных продуктов распада только в том случае, если суточное потребление этанола не превышает 20 г. Если же доза превышена, то в организме накапливаются промежуточные продукты распада.

Это приводит к целому ряду побочных отрицательных эффектов: повышенному образованию жира и накоплению его в клетках печени; накоплению пероксидных соединений, способных разрушать клеточные мембраны, в результате чего содержимое клеток вытекает через образовавшиеся поры; весьма нежелательным явлениям, совокупность которых приводит к разрушению печени - циррозу.

Уксусный альдегид в 30 раз токсичнее этилового спирта. Кроме того, в результате различных биохимических реакций в тканях и органах, в том числе в головном мозге, возможно образование тетрагидропапаверолина, структура и свойства которого напоминают широко известные наркотики психотропного действия – морфин и канабинол. Врачи доказали, что возникновение мутаций и различных уродств у эмбрионов вызывает именно уксусный альдегид.

Уксусная кислота усиливает синтез жирных кислот и приводит к жировому перерождению печени.

Изучая физические свойства спиртов, мы затрагивали вопрос изменения их токсичности в гомологическом ряду одноатомных спиртов. С увеличением молекулярной массы молекул веществ возрастают их наркотические свойства. Если сравнить этиловый и пентиловый спирты, то молекулярная масса последнего больше в 2 раза, а токсичность – в 20 раз. Спирты, содержащие три- пять атомов углерода, образуют так называемые сивушные масла, наличие которых в спиртных напитках увеличивает их ядовитые свойства.

В этом ряду исключение составляет метанол - сильнейший яд. При попадании в организм 1-2 чайных ложек его поражается зрительный нерв, что приводит к полной слепоте, а употребление 30-100 мл приводит к смертельному исходу. Опасность усиливается из-за сходства метилового спирта с этиловым спиртом по свойствам, внешнему виду, запаху.

Вместе с учащимися пробуем найти причину этого явления. Они выдвигают различные гипотезы. Останавливаемся на том, что к факторам, увеличивающим токсичность метилового спирта, можно отнести малый размер молекул (высокая скорость распространения), а также то, что промежуточные продукты его окисления - муравьиный альдегид и муравьиная кислота – сильные яды.

Не обезвреженный печенью спирт и ядовитые продукты его распада вновь поступают в кровь и разносятся по всему организму, надолго оставаясь в нем. Например, в головном мозге спирт обнаруживается в неизменном виде после 20 дней после его принятия.

Обращаем внимание учащихся на то, как спирт и продукты его распада выводятся из организма.

К сожалению, в последнее время потребление спиртного, как и курение, распространено среди женщин. Влияние алкоголя на потомство идет по двум направлениям.

Во-первых, употребление алкоголя сопровождается глубокими изменениями в половой сфере как мужчин, так и женщин. Алкоголь и продукты его разложения могут подействовать как на женские, так и на мужские половые клетки еще до оплодотворения – изменяется их генетическая информация (см. рис. «Здоровые (1) и патологические (2) сперматозоиды»).

Если употребление алкоголя длительное, нарушается деятельность половой системы, она начинает производить неполноценные половые клетки.

Во-вторых, алкоголь непосредственно воздействует на зародыш. Постоянное употребление 75-80 г водки, коньяка или 120-150 г более слабых алкогольных напитков (пива) может вызвать алкогольный синдром плода. Через плаценту в воды, окружающие плод, попадают не только алкоголь, но и продукты его разложения, в частности уксусный альдегид, который в десятикратном размере опаснее самого алкоголя.

Алкогольная интоксикация пагубно воздействует на плод, потому что его печень, куда прежде всего попадает кровь из плаценты, еще не имеет специального фермента, разлагающего алкоголь, и он, не обезвреженный, разносится по всему организму и вызывает необратимые изменения. Особенно алкоголь опасен на 7-11-й неделе беременности, когда начинают развиваться внутренние органы. Он отрицательно воздействует на их развитие, вызывая нарушения и изменения. Особенно страдает головной мозг. Из-за воздействия алкоголя могут развиться слабоумие, эпилепсия, неврозы, сердечные и почечные нарушения, повреждаются внешние и внутренние половые органы.

Иногда повреждения психики и интеллекта наблюдаются уже в раннем детстве, но чаще всего они выявляются, когда дети начинают учиться. Такой ребенок интеллектуально ослаблен, агрессивен. Алкоголь действует на организм ребенка намного сильнее, чем на организм взрослого человека. Особенно чувствительны и легкоранимы нервная система и мозг ребенка.

Итак, посмотрим на таблицу «Влияние алкоголя на наследственность и здоровье детей» и сделаем выводы .

Судьбы детей

В семьях пьющих родителей

В семьях непьющих родителей

Умерли в первые месяцы жизни

Оказались неполноценными, больными

Здоровы физически и душевно

Длительное употребление спиртных напитков приводит к размягчению коркового слоя. Наблюдаются многочисленные точечные кровоизлияния; нарушается передача возбуждения от одной нервной клетки на другую. Не забывайте лаконичных предостерегающих слов В. В. Маяковского:

Не пейте спиртных напитков.

Пьющим – яд, окружающим – пытка.

Таким образом, вы закрепили умения предсказывать химические свойства незнакомых органических веществ, опираясь на знание функциональных групп, повторили физические и химические свойства кислородсодержащих органических веществ, закрепили умения определять принадлежность органических соединений к классам веществ.

III. Домашнее задание.

1. Осуществите превращения:

2. Изучите возможные причины загрязнения окружающей среды вблизи производства: метанола, фенола, формальдегида, уксусной кислоты. Проанализируйте влияние этих веществ на природные объекты: атмосферу, водные источники, почву, растения, животных и человека. Опишите меры оказания первой помощи при отравлении

Тема: «Генетическая связь между спиртами, фенолами»

Цель урока: обобщить и систематизировать пройденный материал.
Задачи урока:
- образовательные: обеспечить в ходе урока повторение основных терминов и понятий по теме; закрепить знания учащихся о составе, строении и свойствах спиртов и фенолов;
- развивающие: развивать умения учащихся анализировать, сравнивать, устанавливать взаимо-связь между строением и свойствами соединений; развивать творческие способности и познава-тельный интерес учащихся к химии;
- воспитательные: особое внимание уделить вредному воздействию этанола на организм чело-века; пропаганда здорового образа жизни.

Тип урока: обобщающий.

Оборудование: мультимедийный проектор, экран, компьютеры (12).

Ход урока.

I. Организационный момент.

II. Ребята, сегодня мы проводим обобщающий урок по теме «Спирты и фенолы», на котором должны закрепить и систематизировать знания, полученные вами в ходе изучения темы. (Слайд 1)

(Слайд 2):
Сегодня на уроке:
вы повторите, что такое спирты и фенолы;
вы узнаете о губительном действии этанола на организм человека;
вы выполните упражнения на компьютере;
вы приятно удивитесь: оказывается, вы знаете уже так много!

III. Фронтальный опрос.

1. Какие вещества называются спиртами? (слайд 3)

Ответ: Спиртами называются органические вещества, молекулы которых содер-жат одну или несколько гидроксильных групп –ОН, соединенных с углеводород-ным радикалом. (слайд 4)

Ответ: Спиртами называются органические вещества, молекулы которых со-держат одну или несколько гидроксильных групп –ОН, соединенных с углеводо-родным радикалом. (слайд 4)

2. По каким признакам классифицируют спирты? (слайд 3)
Ответ: По числу гидроксильных групп (одноатомные, двухатомные, трехатом-ные); по характеру углеводородного радикала (предельные, непредельные, арома-тические); по характеру атома углерода, с которым связана гидроксильная группа (первичные, вторичные, третичные). (слайд 6)

3. Продолжите фразу «Фенолы – это…» (слайд 3)
Ответ: Фенолы – это органические вещества, содержащие радикал фенил, свя-занный с одной или несколькими гидроксильными группами. (слайд 7)

4. Какие виды изомерии характерны для спиртов? (слайд 3)
Ответ: По положению функциональной группы, углеродного скелета, межклас-совая с простыми эфирами. (слайд 8)

5. Какими химическими свойствами обладают спирты? (слайд 3)
Ответ: Спиртам характерны следующие реакции:
- замещения;
- дегидратации;
- этерификация;
- окисление. (слайд 9)

6. Каковы качественные реакции на многоатомные спирты и фенолы? (слайд 3)
Ответ: на многоатомные спирты – взаимодействие со свежеприготовленным гидроксидом меди (II) с образованием ярко-синего алкоголята меди; на фенолы – взаимодействие с раствором FeCl3 с образованием фиолетового фенолята железа. (слайд 10)

IV. Игра «Нет –да»
1. Можно получить спирт из этена? (да)
2. Этанол содержится в листьях растений? (нет)
3. Брожениям сахаристых веществ получают метанол? (нет)
4. Из древесной стружки сбраживанием можно получить этанол? (нет)
5. Если картофель заморозить, то можно получить этиловый спирт? (да)
V. Осуществите превращения:
C2H5OH->C2H5CL->C2H5OH->C2H5OC2H5
CO2
Назовите вещества
VI. Зарядка
VII. Ведь раб не тот, кто стонет под кнутом,
Не тот отшельник, кто воле неба,
Живёт в уединении глухом,
И ниш не тот, кто просит корку хлеба,
И тот и раб, и нищ, и одинок,
Кто в жизни выбрал спутником порок.
О чём мы будем говорить сейчас ребята
VIII. Согласны ли вы с выражением Эдгара По «Спирт и опиум – близнецы ада и гибели».
Вам было дано задания подготовить антирекламу на алкоголь.
Давайте передём от грустного явления к применению кислородсодержащих со-единений.
Учащиемся выполняют рефлексивный тест, который не подписывают. В случае согласия с утверждением ставят знак «+» напротив него.

VIIII.Рефлексивный тест:
1. Мне это пригодится в жизни.
2. На уроке было над чем подумать.
3. На все возникшие у меня вопросы я получил(а) ответы.
4. На уроке я поработал(а) добросовестно.

Х.Подведение итогов урока, выставление оценок.

Тема 1. Теоретические основы органической химии (4 ч)

Формирование органической химии как науки. Органические вещества. Органическая химия. Теория строения органических соединений А. М. Бутлерова. Углеродный скелет. Радикалы. Функциональные группы. Гомологический ряд. Гомологи.
Структурная изомерия. Номенклатура. Значение теории строения органических соединений.
Электронная природа химических связей в органических соединениях. Способы разрыва связей в молекулах органических веществ. Электрофилы. Нуклеофилы.
Классификация органических соединений.
Демонстрации . Ознакомление с образцами органических веществ и материалов. Модели молекул органических веществ. Растворимость органических веществ в воде и неводных растворителях. Плавление, обугливание и горение органических веществ.

УГЛЕВОДОРОДЫ (23 ч)

Тема 2. Предельные углеводороды (алканы) (7 ч)

Электронное и пространственное строение алканов. Гомологический ряд. Номенклатура и изомерия. Физические и химические свойства алканов. Реакция замещения. Получение и применение алканов.
Циклоалканы. Строение молекул, гомологический ряд. Нахождение в природе. Физические и химические свойства.
Демонстрации. Взрыв смеси метана с воздухом. Отношение алканов к кислотам, щелочам, к раствору перманганата калия и бромной воде.
Лабораторные опыты. Изготовление моделей молекул углеводородов и

галогенопроизводных.
Практическая работа. Качественное определение углерода, водорода и хлора в органических веществах.
Расчетные задачи. Нахождение молекулярной формулы органического соединения по массе (объему) продуктов сгорания.

Тема 3. Непредельные углеводороды (6 ч)

Алкены. Электронное и пространственное строение алкенов. Гомологический ряд. Номенклатура. Изомерия: углеродной цепи, положения кратной связи, цис-, транс- изомерия. Химические свойства: реакция окисления, присоединения, полимеризации. Правило Марковникова. Получение и применение алкенов.
Алкадиены. Строение. Свойства, применение. Природный каучук.
Алкины. Электронное и пространственное строение ацетилена. Гомологи и изомеры. Номенклатура. Физические и химические свойства. Реакции присоединения и замещения. Получение. Применение.
Демонстрации. Получение ацетилена карбидным способом. Взаимодействие ацетилена с раствором перманганата калия и бромной водой. Горение ацетилена. Разложение каучука при нагревании и испытание продуктов разложения.
Практическая работа. Получение этилена и изучение его свойств.

Тема 4. Ароматические углеводороды (арены) (4 ч)

Арены. Электронное и пространственное строение бензола. Изомерия и номенклатура. Физические и химические свойства бензола. Гомологи бензола. Особенности химических свойств гомологов бензола на примере толуола. Генетическая связь ароматических углеводородов с другими классами углеводородов.
Демонстрации. Бензол как растворитель, горение бензола. Отношение бензола к бромной воде и раствору перманганата калия. Окисление толуола.



Тема 5. Природные источники углеводородов (6 ч)

Природный газ. Попутные нефтяные газы. Нефть и нефтепродукты. Физические свойства. Способы переработки нефти. Перегонка. Крекинг термический и каталитический. Коксохимическоепроизводство .
Лабораторные опыты. Ознакомление c образцами продуктов нефтепереработки.
Расчетные задачи.

КИСЛОРОДСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ (25 ч)

Тема 6. Спирты и фенолы (6 ч)

Одноатомные предельные спирты. Строение молекул, функциональная группа. Водородная связь. Изомерия и номенклатура. Свойства метанола (этанола), получение и применение. Физиологическое действие спиртов на организм человека. Генетическая связь одноатомных предельных спиртов с углеводородами.
Многоатомные спирты. Этиленгликоль, глицерин. Свойства, применение.
Фенолы. Строение молекулы фенола. Взаимное влияние атомов в молекуле на примере молекулы фенола. Свойства фенола. Токсичность фенола и его соединений. Применение фенола.
Демонстрации. Взаимодействие фенола с бромной водой и раствором гидроксида натрия.
Лабораторные опыты. Растворение глицерина в воде. Реакция глицерина с гидроксидом меди(II).
Расчетные задачи. Расчеты по химическим уравнениям при условии, что одно из реагирующих веществ дано в избытке.



Тема 7. Альдегиды, кетоны (3 ч)

Альдегиды. Строение молекулы формальдегида. Функциональная группа. Изомерия и номенклатура. Свойства альдегидов. Формальдегид и ацетальдегид: получение и применение.
Ацетон - представитель кетонов. Строение молекулы. Применение.
Демонстрации. Взаимодействие метаналя (этаналя) с аммиачным раствором оксида серебра(I) и гидроксида меди(II). Растворение в ацетоне различных органических веществ.
Лабораторные опыты. Получение этаналя окислением этанола. Окисление метаналя (этаналя) аммиачным раствором оксида серебра(I). Окисление метаналя (этаналя) гидроксидом меди(II).

Тема 8. Карбоновые кислоты (6 ч)

Одноосновные предельные карбоновые кислоты. Строение молекул. Функциональная группа. Изомерия и номенклатура. Свойства карбоновых кислот. Реакция этерификации. Получение карбоновых кислот и применение.
Краткие сведения о непредельных карбоновых кислотах.
Генетическая связь карбоновых кислот с другими классами органических соединений.
Практические работы
Получение и свойства карбоновых кислот.
Решение экспериментальных задач на распознавание органических веществ.

Тема 9. Сложные эфиры. Жиры (3 ч)

Сложные эфиры: свойства, получение, применение. Жиры. Строение жиров. Жиры в природе. Свойства. Применение.
Моющие средства. Правила безопасного обращения со средствами бытовой химии.
Лабораторные опыты. Растворимость жиров, доказательство их непредельного характера, омыление жиров. Сравнение свойств мыла и синтетических моющих средств. Знакомство с образцами моющих средств. Изучение их состава и инструкции по применению.

Тема 10. Углеводы (7 ч)

Глюкоза. Строение молекулы. Оптическая (зеркальная) изомерия. Фруктоза - изомер глюкозы. Свойства глюкозы. Применение. Сахароза. Строение молекулы. Свойства, применение.
Крахмал и целлюлоза - представители природных полимеров. Реакция поликонденсации. Физические и химические свойства. Нахождение в природе. Применение. Ацетатное волокно.
Лабораторные опыты. Взаимодействие глюкозы с гидроксидом меди(II). Взаимодействие глюкозы с аммиачным раствором оксида серебра(I). Взаимодействие сахарозы с гидроксидом кальция. Взаимодействие крахмала с иодом. Гидролиз крахмала. Ознакомление с образцами природных и искусственных волокон.
Практическая работа. Решение экспериментальных задач на получение и распознавание органических веществ.

Тема 11. Амины и аминокислоты (3 ч)

Амины. Строение молекул. Аминогруппа. Физические и химические свойства. Строение молекулы анилина. Взаимное влияние атомов в молекуле на примере молекулы анилина. Свойства анилина. Применение.
Аминокислоты. Изомерия и номенклатура. Свойства. Аминокислоты как амфотерные органические соединения. Применение. Генетическая связь аминокислот с другими классами органических соединений.

Тема 12. Белки (4 ч)

Белки - природные полимеры. Состав и строение. Физические и химические свойства. Превращение белков в организме. Успехи в изучении и синтезе белков.
Понятие об азотсодержащих гетероциклических соединениях. Пиридин. Пиррол. Пиримидиновые и пуриновые основания. Нуклеиновые кислоты: cостав, строение.
Химия и здоровье человека. Лекарства. Проблемы, связанные с применением лекарственных препаратов.
Демонстрации. Окраска ткани анилиновым красителем. Доказательство наличия функциональных групп в растворах аминокислот.
Лабораторные опыты. Цветные реакции на белки (биуретовая и ксантопротеиновая реакции).

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ (7 ч)

Тема 13. Синтетические полимеры (7 ч)

Понятие о высокомолекулярных соединениях. Полимеры, получаемые в реакциях полимеризации. Строение молекул. Стереонерегулярное и стереорегулярное строение полимеров. Полиэтилен. Полипропилен. Термопластичность. Полимеры, получаемые в реакциях поликонденсации. Фенолформальдегидные смолы. Термореактивность.
Синтетические каучуки. Строение, свойства, получение и применение.
Синтетические волокна. Капрон. Лавсан.
Обобщение знаний по курсу органической химии. Органическая химия, человек и природа.
Демонстрации. Образцы пластмасс, синтетических каучуков
и синтетических волокон.
Лабораторные опыты. Изучение свойств термопластичных полимеров. Определение хлора в поливинилхлориде. Изучение свойств синтетических волокон.
Практическая работа. Распознавание пластмасс и волокон.
Расчетные задачи. Определение массовой или объемной доли выхода продукта реакции от теоретически возможного.

11 класс
70 ч/год (2 ч/нед.; 7 ч - резервное время)

Тема урока:

«Представители непредельных карбоновых кислот. Связь между углеводородами, спиртами, альдегидами и кислотами»

Цель урока: Систематизировать и углубить знания учащихся о функциональных группах, гомологии на примере предельных одноосновных карбоновых кислот. Закрепить умения учащихся обозначать распределение электронной плотности в молекулах конкретных карбоновых кислот. Выделить общность химических свойств у кислот в неорганической и органической химии. Подчеркнуть единство веществ. Выработка умений самостоятельного применения знаний при рассмотрении непредельных карбоновых кислот. При выявлении генетической связи, показать многообразие органических веществ, переход от более простого строения к более сложному, переход количественных изменений в качественные, формирование диалектико-материалистического мировоззрения.

Оборудование: Плёнки для кодоскопа.

1. Модель молекул НСООН, СН 3 СООН.

2. «Водородная связь»

3. «Сравнение кислот НСООН и СН 3 СООН, СН 3 СООН и СН 2 СlСООН»

4. «Пространственные изомеры непредельной кислоты С 17 Н 33 СООН»

Растворы: СН з СООН, Na 2 C0 3 ; NaOH; фенолфталеина; стеариновая кислота С17Н35СООН, олеиновая кислота С 17 Н 33 СООН, кристаллическая соль ацетат натрия - CH 3 COONa, мыло, аспирин, ацетатное волокно, киноплёнка, (СНзСОО) 2 Рb, латекс.

Методы урока: Беседа, фронтальный индивидуальный опрос, использование карточек, плёнок для кодоскопа, демонстрация наглядностей, проведение опытов.

План урока:

1. Обобщение знаний о карбоновых кислотах.

2. Физические свойства, нахождение в природе предельных одноосновных карбоновых кислот.

3. Химические свойства предельных одноосновных карбоновых кислот.

4. Получение предельных одноосновных карбоновых кислот.

5. Применение муравьиной кислоты, уксусной и высших предельных одноосновных кислот.

6. Знакомство с непредельными карбоновыми кислотами, их свойства, применение.

7. Генетическая связь между углеводородами, спиртами, альдегидами, карбоновыми кислотами.

Ход урока: (вводное слово)

Сегодня мы продолжаем разговор о карбоновых кислотах, веществах столь разнообразных по своему строению. Интересны и многогранны области их применения.

Стоит нам только внести радикал кратную связь, и мы познакомимся с непредельными одноосновными карбоновыми кислотами. Итак, цель нашего урока закрепить, усовершенствовать знания о кислотах, продуктах окисления углеводородов, спиртов, альдегидов, самостоятельно, используя все накопленные знания и умения предугадать свойства ненасыщенных кислот.

Вызываю к доске 6 учеников, которые работают по карточкам.

№1. «Химические свойства карбоновых кислот»

№2. «Особые свойства карбоновых кислот»

№3. «Специфические свойства муравьиной кислоты»

№4. «Способы получения муравьиной кислоты»

№5. «Способы получения уксусной кислоты»

№6. «Получение стеариновой кислоты в лаборатории и по способу Н.М. Эмануэля»

Одновременно провожу фронтальный опрос.

Вопросы к классу:

1. Какие соединения называются карбоновыми кислотами?

2. Как классифицируют карбоновые кислоты?

3. Назвать общую формулу предельных одноосновных карбоновых кислот? Назвать представителей гомологического ряда, дать им названия?

4. Нахождение кислот в природе (показываю формулы молочной, лимонной, щавелевой кислот).

Дополняю: чётные кислоты содержатся в природе ввиде животных и растительных жиров, в маслах, а также в воске (т.е. в форме сложных эфиров). Эти кислоты были открыты давно. В арахисовом масле - арахиновая кислота С 19 Н 39 СООН, в пальмовом - пальмитиновая С 15 Н 31 СООН.

А вот нечётные кислоты с большим числом атомов углерода в природе обычно не встречаются, они получены синтетически и их называют греческими числительными.

5. Физические свойства карбоновых кислот?

Слушаем ответы учащихся, работавших у доски по карточкам. После объяснения ими химических свойств карбоновых кислот, заострено внимание на общность органических кислот и особенности в проявлении свойств у органических кислот - как веществ более сложной структуры.

Проводим опыты, характерные для неорганических и органических кислот. (Опыты проводили учащиеся на демонстрационном столе).

1) 2СН З СООН + Mg → (CH 3 COO) 2 Mg + Н 2

2Н + Mg° → Mg + H2°

2) СН 3 СООН + NaOH → СН 3 СООNа + H 2 O

H + ОН = Н 2 0

3) 2СН З СООН + Na 2 C0 3 → 2CH 3 COONa + С0 2 + Н 2 О

2Н + СО 3 → С0 2 + Н 2 О.

(показываю кристаллическую соль СН 3 СООNа)

После ответов всех учащихся у доски, предлагаю посмотреть модель молекул НСООН и СН 3 СООН (проектирую плёнку №1 через кодоскоп). Вопросы к классу:

  • Где применяется муравьиная кислота?

Прослушиваем дополнения о применении НСООН.

Чем объясняется увеличение объема производства муравьиной кислоты в последние годы?

Моё дополнение:

Дезинфицирующие и «успокаивающие» (отвлекающие) средство - так называемый муравьиный спирт. Это не просто раствор муравьиной кислоты в этаноле, её сила оказывается достаточной для того, чтобы катализировать свою же собственную реакцию со спиртом - этерификацию, к которой уксусная, к примеру кислота без помощи другой, более могущественной, неспособна, т.е. мы имеем равновесную композицию муравьиная кислота, этанол и этилформиат.

Муравьиная кислота идет на производство растворителей. Каталитическая активность НСООН играет свою роль и в производстве натурального каучука, её применяют для коагуляции латекса. Не обходится без муравьиной кислоты при выделке кож, здесь она служит катализатором гидролиза загрязняющих шкуру жиров, способствует дублению.

Ещё одно важнейшее преимущество муравьиной кислоты: со временем она разлагается сама собой, что означает экологическую чистоту любого связанного с ней производства. Муравьиную кислоту можно использовать для травления листовой стали, переработки древесины, выход древесиной пульпы возрос бы в полтора раза, а проблемы загрязнения окружающей среды, неизбежные при традиционном варианте технологии, потребляющем минеральные кислоты, удалось бы в значительной степени снять.

Где применяется уксусная кислота?

Что такое гербициды?

Написать структурные формулы некоторых гибрицидов. (дополнительное сообщение).

Где применяются, высшие карбоновые кислоты?

Проектирую плёнку №2.

Рассматриваем где: (в спиртах, альдегидах, кислотах), образуется водородная связь.

Проектирую плёнку №3.

Разбираем какая кислота сильнее:

НСООН и СН з СООН

СН з СООН и СН 3 С1СООН.

Рассмотрим непредельные карбоновые кислоты. Вызываю ученика к доске. Записываем цепочку, в которой знакомимся с двумя непредельными кислотами:

СН З -СН 2 -СООН → СН 2 =СН-СООН → СН 2 = С - СООН

акриловая ‌‌ │

СНз

металакриловая кислота

Другой ученик:

Н 2

C I7 H 35 COOH → С 17 Н зз СООН

олеиновая кислота

Есть ли пространственные изомеры у: СН з -(СН 2 ) 7 -СН=СН-(СН 2 ) 7 -СООН?

Показываю плёнку №4.

Олеиновая кислота цис-изомер форма молекулы у неё такова. Что силы взаимодействия между молекулами сравнительно невелики, и вещество оказывается жидким. Молекулы транс-изомера более вытянуты; они могут плотнее примыкать друг к другу, силы взаимодействия между ними большие и вещество оказывается твердым - это этандионавая кислота.

СН з -(СН 2 ) 4 -СН = СН-СН 2 -СН = СН-(СН 2 ) 7 -СООН

Линолевая кислота

Какие реакции характерны для непредельных кислот?

а) Учащиеся самостоятельно характеризуют химические свойства. Делают записи:

Как кислота реагирует со спиртами:

СН 2 =С-СООН +НОСН 3 ↔ СН 2 = С - СООСН 3

│ │

СН 3 СН 3

б) Как для непредельных соединений характерны реакции присоединения, полимеризации, окисления. Например:

С 17 Н зз СООН + Н 2 → С 17 Н 35 СООН

Олеиновая стеариновая

Окислением кислот получают олифы из льняного и конопляного масла, в состав которых входят олеиновая и линолевая кислоты виде сложных эфиров.

Рассмотрим генетическую связь между углеродами и кислородосодержащими органическими соединениями.

Проектирую плёнку №5.

Ставлю задачи перед группами учащихся.

Задача №1. Страна в которой вы живете богата углём, составить цепь для получения СН з СООН.

Правильный ответ таков:

С +Н 2 О + Н 2 О +О 2

СаО → СаС 2 → С 2 Н 2 → СН з СОН → СН з СООН

Задача №2. Исходя из нефти получить СНзСООН.

Правильный ответ:

Нефть → пиролиз → С 2 Н 4 → С 2 Н 5 ОН → СН з СООН или

Нефть → С 4 Н 10 →СН з СООН.

Переходя от одних веществ к другим, к более сложным по строению, мы подтверждаем одним из законов диалектики перехода в качественные, опять прослеживается единство и взаимосвязь неорганических и органических веществ.

Оцениваю учащихся.

Домашнее задание.


Вариант 1

1. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения: метан → хлор-метан → метанол → формальдегид → муравьиная кислота. Укажите условия протекания реакций.

2. Напишите структурную формулу вещества состава C₃H₆O₂, если известно, что его водный раствор изменяет окраску метилового оранжевого в красный цвет, с хлором это вещество образует соединение C₃H₅ClO₂, а при нагревании его натриевой соли с гидроксидом натрия образуется этан. Назовите вещество.

3. Рассчитайте массу вещества (в граммах) и количество вещества (в молях) каждого продукта при проведении следующих превращений: бромэтан → этанол → этановая кислота. Бромэтан был взят массой 218 г.

Вариант 2

1. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения: ацетилен → этилен → этанол → ацетальдегид → уксусная кислота. Укажите условия протекания реакций.

2. Напишите структурную формулу вещества состава C₄H₈O, если известно, что оно взаимодействует с гидроксидом меди (II) и при окислении образует 2-метилпропановую кислоту. Назовите это вещество.

3. Рассчитайте массу вещества (в граммах) и количество вещества (в молях) каждого продукта при проведении следующих превращений: пропан → 2-хлопропан → пропанол-2. Пропан был взят массой 22 г.

Вариант 3

1. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения: метан → ацетилен → уксусный альдегид → этиловый спирт → этановая кислота. Укажите условия протекания реакций.

2. Напишите структурную формулу вещества состава C₅H₁₀O, если известно, что оно присоединяет водород в присутствии катализатора, а при нагревании со свежеприготовленным гидроксидом меди (II) образует красный осадок. Назовите это вещество.

3. Рассчитайте массу вещества (в граммах) и количество вещества (в молях) каждого продукта при проведении следующих превращений: бензол → хлорбензол → фенол. Бензол был взят массой 156 г.

Вариант 4

1. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения: метан → формальдегид → метанол → муравьиная кислота → угольная кислота. Укажите условия протекания реакций.

2. Напишите структурную формулу вещества состава C₂H₆O₂, если известно, что оно взаимодействует с натрием с выделение водорода, а с гидроксидом меди (II) образует вещество ярко-синей окраски. Назовите это вещество.

3. Рассчитайте массу вещества (в граммах) и количество вещества (в молях) каждого продукта при проведении следующих превращений: хлорметан → метанол → метановая кислота. Хлорметан был взят массой 202 г.