Нефтяной газ где встречается. Попутный нефтяной газ: состав. Природный и попутный нефтяной газ

Попутный нефтяной газ (ПНГ), как ясно из самого названия, является побочным продуктом добычи нефти. Нефть залегает в земле вместе с газом и технически практически невозможно обеспечить добычу исключительно жидкой фазы углеводородного сырья, оставляя газ внутри пласта.

На данном этапе именно газ воспринимается как попутное сырье, так как мировые цены на нефть обуславливают большую ценность именно жидкой фазы. В отличие от газовых месторождений, где все производственные и технические характеристики добычи направлены на извлечение исключительно газообразной фазы (с незначительной примесью газового конденсата), нефтяные промысли не обустроены таким образом, чтобы эффективно вести процесс добычи и утилизации попутного газа.

Далее в этой главнее будут рассмотрены более детально технические и экономические аспекты добычи ПНГ, и исходя из полученных заключений будут выбраны параметры, для которых будет построена эконометрическая модель.

Общая характеристика попутного нефтяного газа

Описание технических аспектов добычи углеводородов начинается с описания условий их залегания.

Сама нефть образуется из органических остатков умерших организмов, оседающих на морском и речном дне. С течением времени вода и ил предохраняли вещество от разложения, и по мере накопления новых слоев давлением на залегающие пласты усиливалось, что в совокупности с температурными и химическими условиями обуславливало образование нефти и природного газа.

Нефть и газ залегают вместе. В условиях большого давления данные вещества скапливаются в порах так называемых материнских пород, и постепенно, проходя процесс непрерывного преобразования, микрокапиллярными силами поднимаются наверх. Но по мере выхода наверх, может образоваться ловушка - когда более плотный пласт накрывает пласт, по которому мигрирует углеводород, и таким образом происходит накапливание. В момент, когда накопилось достаточное количество углеводородов, начинает происходить процесс вытеснения оттуда вначале солёной воды, более тяжёлой, чем нефть. Далее сама нефть отделяется от более лёгкого газа, но при этом часть растворённого газа остаётся в жидкой фракции. Именно отделившаяся вода и газ служат инструментов выталкивания нефти наружу, образуя водо- или газонапорные режимы.

Исходя из условий, глубины залегания и контура территории залегания, разработчик выбирает количество скважин, позволяющее максимизировать добычу.

Основной современный используемый тип бурения - это роторное бурение. В этом случае бурение сопровождается непрерывным подъёмом бурового шлама - фрагментов пласта, отделённых буровым долотом, наружу. При этом, для улучшения условий бурения, используется буровой раствор, зачастую состоящий из смеси химических реагентов. [Грей Форест, 2001]

Состав попутного нефтяного газа будет различаться от месторождения к месторождению - в зависимости от всей геологической истории формирования данных залежей (материнская порода, физико-химические условия и т.д.). В среднем, доля содержания метана в таком газе составляет 70% (для сравнения - природный газ имеет в метан своём составе до 99% объёма). Большое количество примесей создаёт, с одной стороны, трудности для транспортировки газа посредством газотранспортной системы (ГТС), с другой стороны, наличие таких крайне важных составляющих, как этан, пропан, бутан, изобутан и др. делаёт попутный газ крайне желанным сырьём для нефтехимического производства. Для нефтяных месторождений Западной Сибири характерны следующие показатели содержания углеводородов в попутном газе [Популярная нефтехимия, 2011]:

  • · Метан 60-70%
  • · Этан 5-13%
  • · Пропан 10-17%
  • · Бутан 8-9%

ТУ 0271-016-00148300-2005 «Газ нефтяной попутный, подлежащий сдаче потребителям» определяет следующие категории ПНГ (по содержанию компонентов C 3 ++, г/м 3):

  • · «Тощий» - менее 100
  • · «Средний» - 101-200
  • · «Жирный» - 201-350
  • · Особо жирный - более 351

На следующем рисунке [Филиппов, 2011] указаны основные мероприятия, проводимые с попутным нефтяным газом и эффекты, достигаемые этими мероприятиями.

Рисунок 1 - Основные мероприятия, проводимые с ПНГ и эффекты от них, источник: http://www.avfinfo.ru/page/inzhiniring-002

При добычи нефти и дальнейшей поступенчатой сепарации, выделяющийся газ имеет разный состав - самым первым выделяется газ с высоким содержанием метановой фракции, на следующих ступенях сепарации выделяется газ со всё большим содержание углеводородов более высокого порядка. Факторами, влияющими на выделение попутного газа, является температура и давление.

Для определения содержания попутного газа используется газовый хроматограф. При определении состава попутного газа важно так же обратить внимание на присутствие неуглеводородных компонентов - так, наличие сероводорода в составе ПНГ может негативным образом сказаться на возможности транспортировки газа, так как в трубопроводе могут происходить коррозийные процессы.


Рисунок 2 - Схема подготовки нефти и учёта ПНГ, источник: Энергетический центр Сколково

На рисунке 2 схематически изображён процесс поэтапной доработки нефти с выделением попутного газа. Как видно из рисунка, попутный газ - это в основной своей массе побочный продукт первичной сепарации углеводородного сырья, добываемого из нефтяной скважины. Проблема учёта попутного газа заключается в необходимости установки автоматических учётных приборов на нескольких стадиях сепарации, а в дальнейшем и поставках на утилизацию (ГПЗ, котельные и т.д.).

Основные применяемые установки на объектах добычи [Филиппов, 2009]:

  • · Дожимные насосные станции (ДНС)
  • · Установки сепарации нефти (УСН)
  • · Установки подготовки нефти (УПН)
  • · Центральные пункты подготовки нефти (ЦППН)

Количество ступеней зависит от физико-химических свойств попутного газа, в частности от такого фактора, как газосодержание и газовый фактор. Часто газ первой стадии сепарации используется в печах для выработки тепла и подогрева всей массы нефти, с целью увеличение выхода газа на следующих стадиях сепарации. Для движущих механизмов используется электроэнергия, которая так же вырабатывается на промысле, либо используются магистральные электросети. В основном используется газопоршневые элекстростанции (ГПЭС), газотурбинные (ГТС) и дизельгенераторные (ДГУ). Газовые мощности работают на газе первой ступени сепарации, дизельная станция работает на привозном жидком топливе. Конкретный тип электрогенерации выбирается исходя из потребностей и особенностей каждого отдельного проекта. ГТЭС в некоторых случаях может вырабатывать избыточное количество электроэнергии, хватающее на соседние объекты добычи нефти, а в некоторых случаях остатки могут быть проданы на оптовом рынке электроэнергии. При когенерирующем типе производства энергии установки одновременно производят тепло и электроэнергию.

Факельные линии являются обязательным атрибутом любого месторождения. Даже в случае их неиспользования они необходимы для сжигания избытка газа в аварийном случае.

С точки зрения экономики нефтедобычи, инвестиционные процессы в области утилизации попутного газа достаточно инерционны, и ориентируются в первую очередь не на конъюнктуру рынка в краткосрочном периоде, а на совокупность всех экономических и институциональных факторов на достаточно долгосрочном горизонте.

Экономические аспекты добычи углеводородов имеют свою особую специфику. Особенностью нефтедобычи является:

  • · Долгосрочный характер ключевых инвестиционных решений
  • · Значительные инвестиционные лаги
  • · Крупные начальные инвестиции
  • · Необратимость начальных инвестиций
  • · Естественное снижение добычи во времени

Для того, чтобы оценить эффективность любого проекта, распространённой моделью оценки стоимости бизнеса является оценка NPV.

NPV (Net Present Value) - оценка основывается на том, что все будущие предположительные доходы фирмы будут просуммированы и приведены к нынешней стоимости этих доходов. Одна и та же денежная сумма сегодня и завтра отличается на ставку дисконта (i). Это связано с тем, что в период времени t=0 имеющиеся у нас деньги имеют определённую ценность. В то время как в период времени t=1 на данные денежные средства будет распространена инфляция, будут иметься всевозможные риски и негативные влияния. Все это делает будущие деньги «дешевле», чем нынешние.

Средний срок проекта по добыче нефти может составлять около 30 лет с последующим длительным прекращением добычи, растянутым иногда на десятилетия, что связано с уровнем цен на нефть и с окупаемостью операционных затрат. Причём пика добыча нефти достигает в первые пять лет добычи, а потом, в виду естественного падения добычи, постепенно затухает.

В первые годы компания проводит крупные начальные инвестиции. Но сама добыча начинается только через несколько лет после начала капитальных вложений. Каждая компания стремится минимизировать инвестиционный лаг, чтобы как можно скорее выйти на окупаемость проекта.

Типичный график доходности проекта предоставлен на рисунке 3:


Рисунок 3 - схема NPV для типичного проекта нефтедобычи

На данном рисунке изображено NPV проекта. Максимально отрицательное значение - это показатель MCO (maximum cash outlay), является отображением того, насколько больших инвестиций требует проект. Пересечение графика линии накопленных денежных потоков с осью времени в годах - это точка времени окупаемости проекта. Скорость накопления NPV имеет убывающий характер, в связи как со снижающимся темпом добычи, так и со ставкой дисконта времени.

Помимо капитальных вложений, ежегодно добыча требует операционных затрат. Увеличение операционных затрат, коими могут являться ежегодные технические затраты, связанные с экологическими рисками, уменьшают NPV проекта и увеличивают срок окупаемости проекта.

Таким образом, дополнительные траты на учёт, сбор и утилизацию попутного нефтяного газа могут быть оправданы с точки зрения проекта, только если данные расходы будут увеличивать NPV проекта. В ином случае будет происходить уменьшение привлекательности проекта и, как следствие, либо уменьшение количество реализуемых проектов, либо скорректированы объёмы добычи нефти и газа в рамках одного проекта.

Условно, все проекты по утилизации попутного газа можно разделить на три группы:

  • 1. Проект по утилизации сам по себе является прибыльными (с учётом всех экономических и институциональных факторов), и компании не будут нуждаться в дополнительном стимулировании к реализации.
  • 2. Проект по утилизации имеет отрицательный ЧДД, при этом кумулятивный ЧДД от всего проекта по нефтедобычи является положительным. Именно на эту группу могут быть сконцентрированы все меры по стимулированию. Общий принцип будет заключаться в том, чтобы создать условия (льготами и штрафами), при которых компании будет выгодно проводить проекты по утилизации, а не платить штрафы. Причём чтобы суммарные затраты на проект не превышали совокупный NPV.
  • 3. Проекты по утилизации имеют отрицательный NPV, при этом в случае их реализации общий проект нефтедобычи данного месторождения так же становится убыточным. В таком случае меры по стимулированию либо не будут приводить к уменьшению выбросов (компания будут платить штрафы вплоть до их кумулятивной стоимости, равной ЧДД проекта), либо месторождение будет консервироваться, а лицензия сдаваться.

По данным Энергетического центра Сколково, инвестиционный цикл в области реализации проектов по утилизации ПНГ составляет более 3 лет.

Инвестиции, по данным Минприроды, должны составить около 300 млрд рублей до 2014 года для достижения целевого уровня. Исходя из логики администрирования проектов второго типа, ставки выплат за загрязнения должны быть таковы, чтобы потенциальная стоимость всех выплат была бы выше 300 млрд рублей, а альтернативная стоимость равнялась бы совокупным инвестициям.

На современном этапе развития нефтяной отрасли добывающие компании взяли курс на повышение эффективности утилизации попутного газа, неизбежного спутника «чёрного золота» на любом месторождении мира. От простого и привычного факельного сжигания газа операторы переходят к новейшим технологиям его использования и переработки. Тем не менее, утилизация нефтяного газа по-прежнему является малорентабельной и трудоёмкой.

Что представляет собой попутный газ

Попутный нефтяной газ (ПНГ) находится в нефтяных пластах. Он выделяется при снижении показателей давления залежей до отметки, меньшей, чем давление насыщения нефти. Газовый фактор - концентрация газа в нефти - зависит от глубины залежей и колеблется в пределах от пяти кубометров в верхних слоях до нескольких тысяч кубометров на тонну в нижних пластах. ПНГ выделяется в процессе подготовки и добычи нефти. После вскрытия пласта в первую очередь начинает бить газовый фонтан из «шапки». Кроме того, газообразные углеводороды образуются при термической обработке сырья, в том числе гидроочистке, риформинге и крекинге.

Непосредственно отделение нефтяного газа от нефти при помощи сепарирования производится с целью достижения нормативного качества «чёрного золота». Такая работа проводится с применением сепараторов многоступенчатого типа. На первой ступени такого устройства давление составляет до 30 бар, на последней - до 4 бар. В свою очередь, температура и давление получаемого газа зависит от конкретной технологии сепарирования. При этом выход газа является непостоянным и составляет 100–5000 кубометров в час или 25–800 кубометров с тонны.

Состав газа может меняться в зависимости от того, каковы конкретные характеристики нефти, условия её формирования и залегания, а также факторы, которые могут способствовать дегазации сырья. Вместе с лёгкой нефтью на поверхность извлекаются жирные газы, а с тяжёлой - сухие.

Ценность получаемого продукта прямо пропорциональна объёму углеводородов в его составе, содержание которых колеблется на уровне 100–600 граммов на кубометр ПНГ. Газ, который выделяется из «шапок», называемый свободным, содержит меньше тяжёлых углеводородных компонентов, чем тот, который растворён непосредственно в нефти. Благодаря таким свойствам, доля метана в ПНГ на начальных этапах разработки месторождений выше, чем в более поздние периоды освоения блоков. После истощения газовых «шапок» основная часть ПНГ замещается газами, растворёнными в нефти.

Классификация ПНГ по качественному составу:

  1. Чистый углеводородный (95–100% углеводородов).
  2. Углеводородный с углекислым газом (примесь 4–20% CO 2).
  3. Углеводородный с азотом (примесь 3–15% N 2).
  4. Углеводородно-азотный (до 50% N 2).

Нефтяной газ отличается от природного, состоящего преимущественно из метана, большими количествами бутана, пропана и этана, других предельных углеводородов. ПНГ включает не только газовые, но и парообразные компоненты, высокомолекулярные жидкости, начиная с пентанов, а также вещества, которые не являются углеводородами - меркаптаны, сероводород, аргон, азот, гелий, углекислота.

Опасность для человека и природы

В связи с невысокими темпами развития инфраструктуры, необходимой для сбора, перемещения и переработки нефтяного газа и ввиду отсутствия спроса на него, весь без исключения ПНГ раньше сжигался в факелах прямо в местах нефтедобычи. Даже в настоящее время нет возможности оценить объёмы сжигаемого попутного газа, поскольку на многих месторождениях отсутствуют системы учёта.

По усреднённым оценкам, речь идёт о десятках миллиардов кубометров в год во всём мире. В двухтысячных годах только в России сжигалось 6,2 млрд кубометров ПНГ ежегодно. Исследование освоения Приобского месторождения в ХМАО позволяет сделать вывод о том, что такие данные были значительно занижены, поскольку только на этом участке в год сжигается порядка миллиарда кубометров ПНГ.

Подсчитано, что в результате сжигания газа над российской территорией ежегодно образуется около 100 млн тонн углекислого газа. Такие оценки были сделаны, исходя из допущения об эффективной утилизации газа, хотя это и далеко от реальности. На самом же деле вследствие неполного сжигания газа в атмосферу попадает и метан, который считается более активным парниковым газом, чем углекислота. При сгорании газа также происходит выброс окиси азота и сернистого ангидрида. Такие компоненты в атмосферном воздухе вызывают учащение случаев заболеваний органов дыхательной системы, зрения и желудочно-кишечного тракта людей, проживающих в регионах нефтедобычи.

В атмосферный воздух ежегодно попадают также около 500 тыс. тонн активной сажи. Эксперты в области экологии полагают, что частички сажи могут свободно переноситься на большие расстояния и осаждаться льдом или снегом на земной поверхности, что приводит к ухудшению обстановки в районах нефтепромысла вследствие выпадения твёрдых загрязняющих частиц.

Помимо выхода в атмосферу токсичных компонентов, происходит и тепловое загрязнение. Вокруг факела, в котором сжигается ПНГ, начинается термическая деструкция почвы в радиусе до 25 метров, растительность страдает на большей площади - в радиусе до 150 метров.

До вступления в силу в 2004 году Киотского протокола, который включает требование использования попутного нефтяного газа, к проблеме утилизации ПНГ в российском государстве практически не присматривались. Ситуация изменилась в лучшую сторону с 2009 года, когда постановлением правительства РФ было предписано сжигать в факелах не более 5% от объёма попутного нефтяного газа.

Сжигание попутного нефтяного газа за рубежом жёстко преследуется властями и облагается значительными штрафами. Финансовые санкции за сжигание таковы, что оно становится экономически нецелесообразным. В России же настолько эффективные меры пока не принимаются.

В Минприроды РФ, к примеру, заявили, что в стране ежегодно добываются 55 млрд кубометров нефтяного газа и лишь 26% из этого объёма направляется на переработку, ещё 47% используется на месте в нуждах промысла и списывается, а остальной газ - 27% - сжигается. Пронедра писали ранее, что 95-процентная утилизация ПНГ в России ожидается лишь к 2035 году.

Транспортные проблемы

Низкие темпы сокращения объёмов сжигания газа связаны прежде всего с неразвитостью технологий, которые позволяли бы эффективно его утилизировать. Состав такого газа нестабилен и включает примеси. Большие расходы связаны с необходимостью «усушки» ПНГ, поскольку ему характерен высокий уровень влагосодержания, достигающий 100%.

ПНГ насыщен тяжёлыми углеводородами, что значительно осложняет процесс его транспортировки по трубопроводным системам. Потенциальные потребители газа обычно удалены от месторождений нефти на значительные расстояния. Прокладка трубопроводов к газоперерабатывающим предприятиям связана с высокой стоимостью реализации таких проектов. Километр трубопроводной магистрали для перекачки ПНГ стоит около $1,5 млн.

Южно-Приобская компрессорная станция

В связи с транспортными расходами себестоимость перекачки 1 тыс. кубометров газа обходится в $30. Для сравнения, затраты на получение такого же количества природного газа на предприятиях «Газпрома» составляет максимум $7. При себестоимости добычи ПНГ до 250 рублей и транспортировки - 400 рублей за 1 тыс. кубометров, цена на такой газ на рынке устанавливается не выше 500 рублей, что автоматически делает любой способ переработки нерентабельным. Напомним, «Лукойл» предложил установить льготное налогообложение добычи ПНГ, подлежащего глубокой переработке.

Значительные эксплуатационные затраты связаны также с потерями попутного газа по пути его перемещения к точкам переработки. Масштабы технологических потерь рассчитать не представляется возможным, поскольку сейчас отсутствует налаженная система их инструментального учёта. Убыточность работы с ПНГ приводит к тому, что отраслевые компании по факту включают стоимость строительства и эксплуатации трубопроводных систем и компрессорных станций для транспортировки газа в себестоимость нефти.

Использование газа для промысловых нужд

В качестве альтернативы неэффективному сжиганию и затратной переработке может служить технология утилизации ПНГ путём его закачки вместе с рабочими жидкостями обратно в пласт - в «шапку» - в процессе добычи нефти для восстановления давления залежей. Таким образом может достигаться повышение степени отдачи пласта.

По результатам исследований выяснилось, что с применением методики закачки в пласт в год с одной скважины можно добыть дополнительно до 10 тыс. тонн нефти. Сейчас изучается возможность внедрения технологии закачки в пласт попутного газа вместе с водой, которая получила название «водогазовое воздействие». К сожалению, практика закачки газа в пласты применяется в основном за рубежом, а в России по причине высокой затратности она популярности пока не обрела.

Операторы нефтяных месторождений применяют ПНГ в том числе для электрогенерации. Выработанная энергия используется как для нужд промысла, так и для электроснабжения близлежащих районов. Для операторов, которые занимаются освоением небольших месторождений, экономически целесообразно производить энергию для удовлетворения собственных нужд и поставок энергии в малых объёмах для сторонних потребителей.

Шингинская газотурбинная электростанция, работающая на попутном нефтяном газе

Если речь идёт о получении нефтяного газа на крупных блоках, то в данном случае наиболее привлекательным вариантом является производство энергии на мощных электростанциях с дальнейшей оптовой продажей в общую энергосистему. В России строительство электростанций на ПНГ на месторождениях уже применяется повсеместно. Совокупный объём генерации по упомянутой схеме приближается к 1 млрд кВт·ч в год.

Эффективность ПНГ для получения энергии целесообразна при условии близкого расположения генерации к месторождениям. Самым эффективным вариантом является применение энергоустановок с микротурбинами. Сейчас уже производится большое количество установок как поршневого и турбинного типа, которые работают на нефтяном газе. Выхлопные фракции, образующиеся при использовании ПНГ в таких системах, можно применять для теплоснабжения объектов.

В то же время, наличие в составе ПНГ углеводородов тяжёлой группы негативно сказывается на эффективности использования газа в качестве топлива для выработки энергии, а именно снижает номинальную производительность станций и сокращает время работы генерирующих объектов между ремонтами. Следует отметить, что нестабильный состав и загрязнённость примесями делает применение ПНГ для энергогенерации без предварительной усушки и очистки проблематичным.

Очистка и переработка ПНГ

Весь попутный газ, который нефтекомпании не сжигают в факелах и не используют для закачки в пласт или для выработки электроэнергии, направляется на переработку. Перед транспортировкой на перерабатывающие мощности производится очистка нефтяного газа. Освобождение газа от механических примесей и воды облегчает его транспортировку. С целью же предотвращения выпадения сжиженных фракций в полости газопроводов и облегчения смеси в целом производится отфильтровывание части тяжёлых углеводородов.

Удаление сернистых элементов позволяет предотвратить коррозионное воздействие ПНГ на стенки трубопроводов, а извлечение азота и углекислоты даёт возможность снизить объём смеси, не используемый в переработке. Очистка осуществляется с применением разных технологий. После охлаждения и компримирования (сжатия под давлением) газа производится его сепарация или обработка газодинамическими методами. Такие способы являются недорогими, но не позволяют извлечь углекислоту и сернистые компоненты из ПНГ.

Разделительные сепараторы на установке подготовки нефти

В случае задействования сорбционных методов не только частично удаляется сероводород, но и производится осушка от воды и влажных углеводородных фракций. Недостатком сорбции является неудовлетворительная адаптация технологии к полевым условиям, что приводит к потере до трети объёма ПНГ. Для удаления влаги может применяться метод гликолевой сушки, однако лишь в качестве дополнительной меры, поскольку, кроме воды, он ничего более из смеси не извлекает. Другим специализированным способом является обессеривание - как очевидно из названия, применяемый для удаления сернистых компонентов. Также используются методы щелочной очистки и аминовой отмывки.

Адсорбционный осушитель для осушки попутного газа

Все вышеупомянутые способы на сегодняшний день уже можно считать устаревшими. Со временем, вероятно, они будут вытеснены или скомбинированы с самым новым и достаточно эффективным методом - мембранной очисткой. Принцип основан на разной скорости проникновения различных компонентов ПНГ через волокна мембран. До настоящего времени такой метод не применялся в силу того, что до момента выпуска на рынок половолоконных мембран его использование было неэффективным и не имело преимуществ перед другими способами обработки газа.

Принцип работы мембранной установки

Очищенный газ, если сразу же не продаётся потребителям в сжиженном виде для бытовых и коммунальных нужд, проходит процедуру разделения в двух сегментах - для получения топлива или сырья для нефтехимической промышленности. После его поступления на перерабатывающее предприятие производится разделение ПНГ с помощью низкотемпературной абсорбции и конденсации на основные фракции, некоторые из них являются готовыми к использованию продуктами.

В результате разделения образуется по большей части отбензиненный газ - метан с примесью этана, и широкая фракция лёгких углеводородов (ШФЛУ). Отбензиненный газ может свободно транспортироваться по трубопроводным системам и применяться как топливо, а также служить сырьём для производства ацетилена и водорода. Кроме того, путём газопереработки производится автомобильный пропан-бутан жидкого типа (т. е. газомоторное топливо), ароматические углеводороды, узкие фракции и стабильный газовый бензин. ШФЛУ отправляются для дальнейшей переработки на нефтехимические предприятия. Там из данного сырья производятся пластмассы, каучук, топливные присадки, сжиженные углеводороды.

1 - закачка газа в пласт; 2 - топливо для электростанции; 3 - сжигание; 4 - глубокая очистка; 5 - магистральный газопровод; 6 - разделение ПНГ; 7 - ШФЛУ; 8 - топливо; 9 - компрессорная станция; 10 - транспортировка ПНГ

За рубежом динамичными темпами внедряется новейший метод получения жидких углеводородов из попутного газа с использованием технологии Gas-to-liquids, предусматривающей переработку химическими способами. В России данная методика вряд ли найдёт широкое применение, поскольку она плотно завязана на температурные условия окружающей среды и может реализовываться лишь в широтах с жарким или умеренным климатом. В России же преобладающая доля объёма нефти добывается в северных регионах, поэтому для взятия метода Gas-to-liquids на вооружение придётся провести кропотливую исследовательскую работу.

В отрасли активно воплощается в жизнь технология криогенного сжатия ПНГ с использованием однопоточного цикла. Самые мощные охладительные системы уже способны перерабатывать до 3 млрд кубометров попутного газа за год. Эффективным решением является установка таких комплексов на распределительных станциях.

Попутный нефтяной газ, несмотря на низкую и подчас нулевую рентабельность его переработки, находит широчайшее применение в топливно-энергетическом комплексе и нефтехимической промышленности. Вследствие сжигания ПНГ происходят безвозвратные потери колоссального объёма сырья энергоресурсов. Так, ежегодно в России «сжигается» в факелах почти 140 млрд рублей - совокупная стоимость содержащихся в попутном газе пропана, бутана и других компонентов.

Совершенствование технологий утилизации ПНГ позволит России производить в год дополнительно 6 млн тонн жидких углеводородов, 4 млрд кубометров этана, до 20 млрд кубометров сухого газа, а также генерировать 70 тыс. ГВт электрической энергии. Налаживание работы по эффективной утилизации ПНГ - это не только способ решения экологических проблем и задач экономии энергоресурсов, но и база для учреждения целой отрасли, стоимость которой на национальном уровне, по самым скромным подсчётам, оценивается специалистами в полтора десятка миллиардов долларов.

ПРИМЕНЕНИЕ ГАЗА

Газ может находиться в природе в залежах трех типов: газовых, газонефтяных и газоконденсатных.

В залежах первого типа - газовых - газ образует огромные естественные подземные скопления, не имеющие непосредственной связи с нефтяными месторождениями.

В залежах второго типа - газонефтяных - газ сопровождает нефть или нефть сопровождает газ. Газонефтяные залежи, как указано выше, бывают двух типов: нефтяные с газовой шапкой (в них основной объем занимает нефть) и газовые с нефтяной оторочкой (основной объем занимает газ). Каждая газонефтяная залежь характеризуется га­зовым фактором - количеством газа (в м 3), приходящимся на 1000 кг нефти.

Газоконденсатные залежи характеризуются высоким давлением (более 3–10 7 Па) и высокими температурами (80–100°С и выше) в пласте. В этих условиях в газ переходят углеводороды С 5 и выше, а при снижении давления происходит конденсация этих углеводородов - процесс обратной конденсации.

Газы всех рассмотренных залежей называются природ­ными газами, в отличие от попутных нефтяных газов, растворенных в нефти и выделяющихся из нее при добыче.

Природные газы

Природные газы состоят в основном из метана. Наряду с метаном в них обычно содержатся этан, пропан, бутан, небольшое количество пентана и высших гомологов и незначительные количества неуглеводородных компонентов: углекислого газа, азота, сероводо­рода и инертных газов (аргона, гелия и др.).

Углекислый газ, который обычно присутствует во всех природных газах, является одним из главных продуктов превращения в природе органического исходного вещества углеводородов. Его содержание в природном газе ниже, чем можно было бы ожидать, исходя из механизма химических превращений органических остатков в при­роде, так как углекислый газ - активный компонент, он переходит в пластовую воду, образуя растворы бикарбонатов. Как правило, содержание углекислого газа не превышает 2,5%. Содержание азота, также обычно присутствующего в природных, связано либо с попаданием атмосферного воздуха, либо с реакциями распада белков живых организмов. Количество азота обычно выше в тех случаях, когда образование газового место­рождения происходило в известняковых и гипсовых породах.

Особое место в составе некоторых природных газов занимает гелий. В природе гелий встречается часто (в воздухе, природном газе и др.), но в ограниченных количествах. Хотя содержание гелия в природном газе невелико (максимально до 1–1,2%), выделение его оказывается выгодным из-за большого дефицита этого газа, а также благодаря большому объему добычи природного газа.

Сероводород, как правило, отсутствует в газовых залежах. Исключение составляет, например, Усть-Вилюйская залежь, где содержание H 2 S достигает 2,5%, и некоторые другие. По-видимому, наличие сероводорода в газе связано с составом вмещающих пород. Замечено, что газ, находящийся в контакте с сульфатами (гипсом и др.) или сульфитами (пирит), содержит относительно больше серо­водорода.

Природные газы, содержащие в основном метан и имеющие очень незначительное содержание гомологов С 5 и выше, относят к сухим или бедным газам. К сухим относится подавляющее большинство газов, добываемых из газовых залежей. Газ газоконденсатных залежей отличается меньшим содержанием метана и по­вышенным содержанием его гомологов. Такие газы называются жирными или богатыми. В газах газоконденсатных залежей, помимо легких углеводородов, содержатся и высококипящие гомологи, которые при снижении давления выделяются в жидком виде (конденсат). В зависимости от глубины скважины и давления на забое в газообразном состоянии могут находиться углеводороды, кипящие до 300–400°С.

Газ газоконденсатных залежей характеризуется содержанием выпавшего конденсата (в см 3 на 1 м 3 газа).

Образование газоконденсатных залежей связано с тем, что при больших давлениях происходит явление обратного растворения - обратной конденсации нефти в сжатом газе. При давлениях около 75×10 6 Па нефть растворяется в сжатом этане и пропане, плотность которых при этом значительно превышает плотность нефти.

Состав конденсата зависит от режима эксплуатации скважины. Так, при поддержании постоянного пластового давления качество конденсата стабильно, но при уменьшении давления в пласте состав и количество конденсата изменяются.

Состав стабильных конденсатов некоторых месторождений хо­рошо изучен. Конец кипения их обычно не выше 300°С. По групповому составу: большую часть составляют метановые углеводороды, несколько меньше - нафтено­вые и еще меньше - ароматические. Состав газов газоконденсатных месторождений после отделения конденсата близок к составу сухих газов. Плотность природного газа относительно воздуха (плотность воздуха принята за единицу) колеблется от 0,560 до 0,650. Теплота сгорания около 37700–54600 Дж/кг.

Попутные (нефтяные) газы

Попутным газом называется не весь газ данной залежи, а газ, растворенный в нефти и выделяющийся из нее при добыче.

Нефть и газ по выходе из скважины проходят через газосепараторы, в которых попутный газ отделяется от не­стабильной нефти, направляемой на дальнейшую переработку.

Попутные газы являются ценным сырьем для промышленного нефтехимического синтеза. Качественно они не отличаются по составу от природных газов, однако количественное отличие весьма существенное. Содержание метана в них может не превышать 25–30%, зато значительно больше его гомологов - этана, пропана, бутана и высших углеводородов. Поэтому эти газы относят к жирным.

В связи с различием в количественном составе попутных и при­родных газов их физические свойства различны. Плотность (по воз­духу) попутных газов выше, чем природных, - она достигает 1,0 и более; теплота сгорания их составляет 46000–50000 Дж/кг.

Применение газа

Одна из главных областей применения углеводородных газов - это использование их в качестве топлива. Высокая теплота сгорания, удобство и экономичность использования бесспорно ставят газ на одно из первых мест среди других видов энергетических ресурсов.

Другой важный вид использования попутного нефтяного газа - его отбензинивание, т. е. извлечение из него газового бензина на газоперерабатывающих заводах или установках. Газ подвергается при помощи мощных компрессоров сильному сжатию и охлаждению, при этом пары жидких углеводородов конденсируются, частично растворяя газообразные углеводороды (этан, пропан, бутан, изобутан). Образуется летучая жидкость - нестабильный газовый бензин, который легко отделяется от остальной неконденсирующейся массы газа в сепараторе. После фракционирования - отделения этана, пропана, части бутанов - получается стабильный газовый бензин, который используют в качестве добавки к товарным бензи­нам, повышающей их испаряемость.

Освобождающиеся при стабилизации газового бензина пропан, бутан, изобутан в виде сжиженных газов, нагнетаемых в баллоны, применяются в качестве горючего. Метан, этан, пропан, бутаны служат также сырьем для нефтехимической промышленности.

После отделения С 2 -С 4 из попутных газов оставшийся отрабо­танный газ близок по составу к сухому. Практически его можно рассматривать как чистый метан. Сухой и отработанный газы при сжигании в присутствии незначительных количеств воздуха в спе­циальных установках образуют очень ценный промышленный про­дукт - газовую сажу:

CH 4 + O 2 à C + 2H 2 O

Она применяется главным образом в резиновой промышленности. Пропусканием метана с водяным паром над никелевым катализатором при температуре 850°С получают смесь водорода и окиси угле­рода - «синтез - газ»:

CH 4 + H 2 O à CO + 3H 2

При пропускании этой смеси над катализатором FeO при 450°С окись углерода превращается в двуокись и выделяется дополни­тельное количество водорода:

CO + H 2 O à CO 2 + H 2

Полученный при этом водород применяют для синтеза аммиака. При обработке хлором и бромом метана и дру­гих алканов получаются продукты замещения:

1. СН 4 + Сl 2 à СН 3 С1 +НСl - хлористый метил;

2. СН 4 + 2С1 2 à СН 2 С1 2 + 2НС1 - хлористый метилен;

3. CH 4 + 3Cl 2 à CHCl 3 + 3HCl - хлороформ;

4. CH 4 + 4Cl 2 à CCl 4 + 4HCl - четыреххлористый углерод.

Метан служит также сырьем для получения синильной кислоты:

2СH 4 + 2NH 3 + 3O 2 à 2HCN + 6H 2 O, а также для производства сероуглерода CS 2 , нитрометана CH 3 NO 2 , который используется как растворитель для лаков.

Занимает попутный нефтяной газ. Раньше этот ресурс никак не применялся. Но сейчас отношение к этому ценному природному ископаемому изменилось.

Что являет собой попутный нефтяной газ

Это углеводородный газ, который выделяется из скважин и из пластовой нефти в процессе ее сепарации. Он являет собой смесь парообразных углеводородных и неуглеводородных составляющих природного происхождения.

Его количество в нефти может быть разным: от одного кубометра до несколько тысяч в одной тонне.

По специфике получения попутный нефтяной газ считается побочным продуктом нефтедобычи. Отсюда и происходит его название. Из-за отсутствия необходимой инфраструктуры для сбора газа, транспортировки и переработки большое количество этого природного ресурса теряется. По этой причине большую часть попутного газа просто сжигают в факелах.

Состав газа

Попутный нефтяной газ состоит из метана и более тяжелых углеводородов - этана, бутана, пропана и т. д. Состав газа в разных месторождениях нефти может немного отличаться. В некоторых регионах в попутном газе могут содержаться неуглеводородные составляющие - соединения азота, серы, кислорода.

Попутный газ, который фонтанирует после вскрытия нефтяных пластов, отличается меньшим количеством тяжелых углеводородных газов. Более «тяжелая» по составу часть газа находится в самой нефти. Поэтому на начальных этапах освоения месторождений нефти, как правило, добывается много попутного газа с большим содержанием метана. В процессе эксплуатации залежей эти показатели постепенно уменьшаются, а большую часть газа составляют тяжелые компоненты.

Природный и попутный нефтяной газ: в чем разница

Попутный газ по сравнению с природным содержит меньше метана, но имеет большое количество его гомологов, в том числе пентана и гексана. Другое важное отличие - сочетание структурных компонентов в разных месторождениях, в которых добывают попутный нефтяной газ. Состав ПНГ даже может меняться в разные периоды на одном и том же месторождении. Для сравнения: количественное сочетание компонентов всегда постоянное. Поэтому ПНГ может использоваться в разных целях, а природный газ применяется только как энергетическое сырье.

Получение ПНГ

Попутный газ получают методом сепарирования от нефти. Для этого используют многоступенчатые сепараторы с разным давлением. Так, на первой ступени сепарации создается давление от 16 до 30 бар. На всех последующих ступенях давление постепенно понижают. На последнем этапе добычи параметр снижают до 1,5-4 бар. Значения температуры и давления ПНГ определяются технологией сепарирования.

Газ, полученный на первой ступени, сразу отправляется на Большие трудности возникают при использовании газа с давлением ниже 5 бар. Раньше такой ПНГ всегда сжигался в факелах, но в последнее время изменилась политика утилизации газа. Правительство начало разрабатывать стимулирующие меры по сокращению загрязнений внешней среды. Так, на государственном уровне в 2009 году был установлен показатель сжигания ПНГ, который не должен превышать 5% от общей добычи попутного газа.

Применение ПНГ в промышленности

Раньше ПНГ никак не использовался и сразу после добывания сжигался. Сейчас ученые разглядели ценность этого природного ресурса и ищут пути его эффективного использования.

Попутный нефтяной газ, состав которого представляет собой смесь пропанов, бутанов и более тяжелых углеводородов, является ценным сырьем для энергетической и химической промышленности. ПНГ обладает теплотворной способностью. Так, во время сгорания он выделяет от 9 до 15 тысяч ккал/кубометр. В первоначальном виде его не применяют. Обязательно требуется очистка.

В химической промышленности из содержащегося в попутном газе метана и этана изготавливают пластмассу и каучук. Более тяжелые углеводородные компоненты используют как сырье для производства высокооктановых топливных присадок, ароматических углеводородов и сжиженных углеводородных газов.

На территории России более 80% объема получаемого попутного газа приходится на пять компаний, добывающих нефть и газ: ОАО "НК Роснефть", ОАО "Газпром нефть", ОАО "Нефтяная ОАО "ТНК-ВР Холдинг", ОАО "Сургутнефтегаз". Согласно официальным данным, страна ежегодно добывает более 50 млрд кубометров ПНГ, из них 26% идет на переработку, 47% используется в промышленных целях, а остальные 27% сжигают в факелах.

Существуют ситуации, в которых не всегда рентабельно использовать попутный нефтяной газ. Применение этого ресурса часто зависит от размера месторождения. Так, газ, добываемый на малых месторождениях, целесообразно использовать для обеспечения электроэнергией местных потребителей. На средних месторождениях наиболее экономично извлекать сжиженный нефтяной газ на газоперерабатывающем заводе и продавать его предприятиям химической промышленности. Оптимальным вариантом для крупных месторождений является производство электроэнергии на большой электростанции с последующей продажей.

Вред от сжигания ПНГ

Сжигание попутного газа загрязняет окружающую среду. Вокруг факела действует термическое разрушение, которое поражает почву в радиусе 10-25 метров и растительность в пределах 50-150 метров. В процессе сгорания в атмосферу попадают окиси азота и углерода, сернистый ангидрид, а также несгоревшие углеводороды. Ученые подсчитали, что в результате сжигания ПНГ выбрасывается около 0,5 млн тонн сажи в год.

Также продукты сгорания газа очень опасны для здоровья человека. Согласно статистическим данным, в основном нефтеперерабатывающем регионе России - Тюменской области - заболеваемость населения по многим видам болезней выше средних показателей по всей стране. Особенно часто жители региона страдают патологиями дыхательных органов. Наблюдается тенденция роста числа новообразований, заболеваний органов чувств и нервной системы.

Кроме того, ПНГ вызывают патологии, которые проявляются только через некоторое время. К ним относятся следующие:

  • бесплодие;
  • невынашивание беременности;
  • наследственные заболевания;
  • ослабление иммунитета;
  • онкологические болезни.

Технологии утилизации ПНГ

Главная проблема утилизации нефтяного газа заключается в высокой концентрации тяжелых углеводородов. В современной нефтегазовой промышленности используется несколько эффективных технологий, которые дают возможность улучшить качество газа путем удаления тяжелых углеводородов:

  1. Газофракционное разделение.
  2. Адсорбционная технология.
  3. Низкотемпературная сепарация.
  4. Мембранная технология.

Пути утилизации попутного газа

Существует много методов, но на практике применяются всего несколько. Основной способ - утилизация ПНГ путем разделения на компоненты. Этот процесс переработки позволяет получить сухой отбензиненный газ, который, по сути, является тем же природным газом, и широкую фракцию легких углеводородов (ШФЛУ). Эта смесь может использоваться в качестве сырья для нефтехимии.

Разделение нефтяного газа происходит на установках низкотемпературной абсорбции и конденсации. После завершения процесса сухой газ транспортируется по газопроводам, а ШФЛУ направляется на нефтеперерабатывающие заводы для дальнейшей обработки.

Второй эффективный способ переработки ПНГ - сайклинг-процесс. Этот метод подразумевает нагнетание газа обратно в пласт для повышения давления. Такое решение позволяет повысить объемы извлечения нефти из пласта.

Кроме того, попутный нефтяной газ можно применять для выработки электроэнергии. Это позволит нефтяным компаниям существенно сэкономить средства, поскольку отпадет необходимость закупать электроэнергию со стороны.

Попутный нефтяной газ

Попутный нефтяной газ (ПНГ ) - смесь различных газообразных углеводородов , растворенных в нефти ; они выделяются в процессе добычи и перегонки (это так называемые попутные газы , главным образом состоят из пропана и изомеров бутана). К нефтяным газам также относят газы крекинга нефти, состоящие из предельных и непредельных (этилена , ацетилена) углеводородов. Нефтяные газы применяют как топливо и для получения различных химических веществ. Из нефтяных газов путем химической переработки получают пропилен , бутилены , бутадиен и др., которые используют в производстве пластмасс и каучуков .

Состав

Попутный нефтяной газ - смесь газов, выделяющаяся из углеводородов любого фазового состояния, состоящая из метана , этана , пропана , бутана и изобутана , содержащая растворенные в ней высокомолекулярные жидкости (от пентанов и выше по росту гомологического ряда) и различного состава и фазового состояния примеси.

Приблизительный состав ПНГ

Получение

ПНГ является ценным углеводородным компонентом, выделяющимся из добываемых, транспортируемых и перерабатываемых содержащих углеводороды минералов на всех стадиях инвестиционного цикла жизни до реализации готовых продуктов конечному потребителю. Таким образом, особенностью происхождения нефтяного попутного газа является то, что он выделяется на любой из стадий от разведки и добычи до конечной реализации, из нефти, газа, (другие источники опущены) и в процессе их переработки из любого неполного продуктового состояния до любого из многочисленных конечных продуктов.

Специфической особенностью ПНГ является обычно незначительный расход получаемого газа, от 100 до 5000 нм³/час . Содержание углеводородов С З + может изменяться в диапазоне от 100 до 600 г/м³ . При этом состав и количество ПНГ не является величиной постоянной. Возможны как сезонные, так и разовые колебания (нормальное изменение значений до 15 %).

Газ первой ступени сепарации, как правило, отправляется непосредственно на газоперерабатывающий завод. Значительные трудности возникают при попытках использовать газ с давлением менее 5 бар . До недавнего времени такой газ в подавляющем большинстве случаев просто сжигался на факелах, однако, сейчас ввиду изменений политики государства в области утилизации ПНГ и ряда других факторов ситуация значительно изменяется. В соответствии с Постановлением Правительства России от 8 января 2009 г. № 7 «О мерах по стимулированию сокращения загрязнения атмосферного воздуха продуктами сжигания попутного нефтяного газа на факельных установках» был установлен целевой показатель сжигания попутного нефтяного газа в размере не более 5 процентов от объема добытого попутного нефтяного газа. В настоящий момент объемы добываемого, утилизируемого и сжигаемого ПНГ невозможно оценить в связи с отсутствием на многих месторождениях узлов учета газа. Но по приблизительным оценкам это порядка 25 млрд м³ .

Пути утилизации

Основными путями утилизации ПНГ являются переработка на ГПЗ, генерация электроэнергии, сжигание на собственные нужды, закачка обратно в пласт для интенсификации нефтеотдачи (поддержание пластового давления), закачка в добывающие скважины - использование «газлифта».

Технология утилизации ПНГ

Газовый факел в западносибирской тайге в начале 1980-х годов

Основная проблема при утилизации попутного газа заключается в высоком содержании тяжелых углеводородов . На сегодняшний день существует несколько технологий, повышающих качество ПНГ за счет удаления значительной части тяжелых углеводородов. Одна из них - подготовка ПНГ с помощью мембранных установок. При применении мембран метановое число газа значительно повышается, низшая теплотворная способность (LHV), тепловой эквивалент и температура точки росы (как по углеводородам, так и по воде) снижаются.

Мембранные углеводородные установки позволяют значительно снизить концентрацию сероводорода и диоксида углерода в потоке газа, что позволяет использовать их для очистки газа от кислых компонентов.

Конструкция

Схема распределния газовых потоков в мембранном модуле

По своей конструкции углеводородная мембрана представляет собой цилиндрический блок с выходами пермеата, продуктового газа и входа ПНГ. Внутри блока находится трубчатая структура селективного материала, который пропускает только определенный вид молекул. Общая схема потока внутри картриджа показана на рисунке.

Принцип работы

Конфигурация установки в каждом конкретном случае определяется специально, так как исходный состав ПНГ может сильно разниться.

Схема установки в принципиальной конфигурации:

Напорная схема подготовки ПНГ

Вакуумная схема подготовки ПНГ

  • Предварительный сепаратор для очистки от грубых примесей, крупной капельной влаги и нефти,
  • Ресивер на входе,
  • Компрессор,
  • Холодильник для доохлаждения газа до температуры от +10 до +20 °C,
  • Фильтр тонкой очистки газа от масла и парафинистых соединений,
  • Углеводородный мембранный блок ,
  • КИПиА,
  • Система управления, включая поточный анализ,
  • Система утилизации конденсата (из сепараторов),
  • Система утилизации пермеата,
  • Контейнерная поставка.

Контейнер должен быть изготовлен в соответствии с требованиями пожаро- взровобезопасности в нефтяной и газовой промышленности.

Существует две схемы подготовки ПНГ: напорная и вакуумная.