Применение явления полного внутреннего отражения. Предельный угол полного отражения

Для начала немного пофантазируем. Представьте жаркий летний день до нашей эры, первобытный человек при помощи остроги охотится на рыбу. Замечает ее положение, целится и наносит удар почему-то вовсе не туда, где была видна рыба. Промахнулся? Нет, в руках у рыбака добыча! Все дело в том, что наш предок интуитивно разбирался в теме, которую мы будем изучать сейчас. В повседневной жизни мы видим, что ложка, опущенная в стакан с водой, кажется кривой, когда мы смотрим через стеклянную банку - предметы кажутся искривленными. Все эти вопросы мы рассмотрим на уроке, тема которого: «Преломление света. Закон преломления света. Полное внутренне отражение».

На предыдущих уроках мы говорили о судьбе луча в двух случаях: что будет, если луч света распространяется в прозрачно однородной среде? Правильный ответ - он будет распространяться прямолинейно. А что будет, когда луч света падает на границу раздела двух сред? На прошлом уроке мы говорили об отраженном луче, сегодня мы рассмотрим ту часть светового пучка, которая поглощается средой.

Какова же будет судьба луча, который проник из первой оптически прозрачной среды, во вторую оптически прозрачную среду?

Рис. 1. Преломление света

Если луч падает на границу раздела двух прозрачных сред, то часть световой энергии возвращается в первую среду, создавая отраженный пучок, а другая часть проходит внутрь во вторую среду и при этом, как правило, изменяет свое направление.

Изменение направления распространения света в случае его прохождения через границу раздела двух сред называют преломлением света (рис. 1).

Рис. 2. Углы падения, преломления и отражения

На рисунке 2 мы видим падающий луч, угол падания обозначим α. Луч, который будет задавать направление преломленного пучка света, будем называть преломленным лучом. Угол между перпендикуляром к границе раздела сред, восстановленным из точки падения, и преломленным лучом называют углом преломления, на рисунке это угол γ. Для полноты картины дадим еще изображение отображенного луча и, соответственно, угла отражения β. Какова же связь между углом падения и углом преломления, можно ли предсказать, зная угол падения и то, с какой среды в какую перешел луч, каким будет угол преломления? Оказывается можно!

Получим закон, количественно описывающий зависимость между углом падения и углом преломления. Воспользуемся принципом Гюйгенса, который регламентирует распространение волны в среде. Закон состоит из двух частей.

Падающий луч, преломленный луч и перпендикуляр, восстановленный в точку падения, лежат в одной плоскости .

Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равна отношению скоростей света в этих средах.

Этот закон называют законом Снеллиуса, в честь голландского ученого, впервые его сформулировавшего. Причина преломления - в разнице скоростей света в разных средах. Убедиться в справедливости закона преломления можно, экспериментально направляя луч света под разными углами на границу раздела двух сред и измеряя углы падения и преломления. Если менять эти углы, измерять синусы и находить отношения синусов этих углов, мы убедимся в том, что закон преломления действительно справедлив.

Доказательства закона преломления при помощи принципа Гюйгенса - еще одно подтверждение волновой природы света.

Относительный показатель преломления n 21 показывает, во сколько раз скорость света V 1 в первой среде отличается от скорости света V 2 во второй среде.

Относительный показатель преломления - это наглядная демонстрация того факта, что причина изменения направления света при переходе из одной среды в другую - это разная скорость света в двух средах. Часто для характеристики оптических свойств среды пользуются понятием «оптическая плотность среды» (рис. 3).

Рис. 3. Оптическая плотность среды (α > γ)

Если луч переходит из среды с большей скоростью света в среду с меньшей скоростью света, то, как видно из рисунка 3 и закона преломления света, он будет прижиматься к перпендикуляру, то есть угол преломления меньше, чем угол падения. В этом случае говорят, что луч перешел из менее плотной оптической среды в более оптически плотную среду. Пример: из воздуха в воду; из воды в стекло.

Возможна и обратная ситуация: скорость света в первой среде меньше скорости света во второй среде (рис. 4).

Рис. 4. Оптическая плотность среды (α < γ)

Тогда угол преломления будет больше угла падения, а про такой переход скажут, что он совершен из оптически более плотной в менее оптически плотную среду (из стекла в воду).

Оптическая плотность двух сред может отличаться достаточно существенно, таким образом, становится возможна ситуация, приведенная на фотографии (рис. 5):

Рис. 5. Отличие оптической плотности сред

Обратите внимание, насколько смещена голова относительно туловища, находящегося в жидкости, в среде с большей оптической плотностью.

Однако относительный показатель преломления - не всегда удобная для работы характеристика, потому что он зависит от скоростей света в первой и во второй средах, а вот таких сочетаний и комбинаций двух сред может быть очень много (вода - воздух, стекло - алмаз, глицерин - спирт, стекло - вода и так далее). Таблицы были бы очень громоздкими, работать было бы неудобно, и тогда ввели одну абсолютную среду, по сравнению с которой сравнивают скорость света в других средах. В качестве абсолюта был выбран вакуум и скорости света сравниваются со скоростью света в вакууме.

Абсолютный показатель преломления среды n - это величина, которая характеризует оптическую плотность среды и равна отношению скорости света С в вакууме к скорости света в данной среде.

Абсолютный показатель преломления удобнее для работы, ведь мы скорость света в вакууме знаем всегда, она равна 3·10 8 м/с и является универсальной физической постоянной.

Абсолютный показатель преломления зависит от внешних параметров: температуры, плотности, а также от длины волны света, поэтому в таблицах обычно указывают средний показатель преломления для данного диапазона длин волн. Если сравнить показатели преломления воздуха, воды и стекла (Рис. 6), то видим, что у воздуха показатель преломления близок к единице, поэтому мы и будем его брать при решении задач за единицу.

Рис. 6. Таблица абсолютных показателей преломления для разных сред

Несложно получить связь абсолютного и относительного показателя преломления сред.

Относительный показатель преломления , то есть для луча, переходящего из среды один в среду два, равен отношению абсолютного показателя преломления во второй среде к абсолютному показателю преломления в первой среде.

Например: = ≈ 1,16

Если абсолютные показатели преломления двух сред практически одинаковы, это значит, что относительный показатель преломления при переходе из одной среды в другую будет равен единице, то есть луч света фактически не будет преломляться. Например, при переходе из анисового масла в драгоценный камень берилл свет практически не отклонится, то есть будет вести себя так, как при прохождении анисового масла, так как показатель преломления у них 1,56 и 1,57 соответственно, таким образом, драгоценный камень можно как бы спрятать в жидкости, его просто не будет видно.

Если налить воду в прозрачный стакан и посмотреть через стенку стакана на свет, то мы увидим серебристый блеск поверхности вследствие явления полного внутреннего отражения, о котором сейчас пойдет речь. При переходе луча света из более плотной оптической среды в менее плотную оптическую среду может наблюдаться интересный эффект. Для определенности будем считать, что свет идет из воды в воздух. Предположим, что в глубине водоема находится точечный источник света S, испускающий лучи во все стороны. Например, водолаз светит фонариком.

Луч SО 1 падает на поверхность воды под наименьшим углом, этот луч частично преломляется - луч О 1 А 1 и частично отражается назад в воду - луч О 1 В 1 . Таким образом, часть энергии падающего луча передается преломленному лучу, а оставшаяся часть энергии - отраженному лучу.

Рис. 7. Полное внутреннее отражение

Луч SО 2 , чей угол падения больше, также разделяется на два луча: преломленный и отраженный, но энергия исходного луча распределяется между ними уже по-другому: преломленный луч О 2 А 2 будет тусклее, чем луч О 1 А 1 , то есть получит меньшую долю энергии, а отраженный луч О 2 В 2 , соответственно, будет ярче, чем луч О 1 В 1 , то есть получит большую долю энергии. По мере увеличения угла падения прослеживается все та же закономерность - все большая доля энергии падающего луча достается отраженному лучу и все меньшая - преломленному лучу. Преломленный луч становится все тусклее и в какой-то момент исчезает совсем, это исчезновение происходит при достижении угла падения, которому отвечает угол преломления 90 0 . В данной ситуации преломленный луч ОА должен был бы пойти параллельно поверхности воды, но идти уже нечему - вся энергия падающего луча SО целиком досталась отраженному лучу ОВ. Естественно, что при дальнейшем увеличении угла падения преломленный луч будет отсутствовать. Описанное явление и есть полное внутреннее отражение, то есть более плотная оптическая среда при рассмотренных углах не выпускает из себя лучи, все они отражаются внутрь нее. Угол, при котором наступает это явление, называется предельным углом полного внутреннего отражения.

Величину предельного угла легко найти из закона преломления:

= => = arcsin, для воды ≈ 49 0

Самым интересным и востребованным применением явления полного внутреннего отражения являются так называемые волноводы, или волоконная оптика. Это как раз тот способ подачи сигналов, который используется современными телекоммуникационными компаниями в сетях Интернет.

Мы получили закон преломления света, ввели новое понятие - относительный и абсолютный показатели преломления, а также разобрались с явлением полного внутреннего отражения и его применением, таким как волоконная оптика. Закрепить знания можно, разобрав соответствующие тесты и тренажеры в разделе урока.

Получим доказательство закона преломления света при помощи принципа Гюйгенса. Важно понимать, что причина преломления - это разность скоростей света в двух различных средах. Обозначим скорость света в первой среде V 1 , а во второй среде - V 2 (рис. 8).

Рис. 8. Доказательство закона преломления света

Пусть на плоскую границу раздела двух сред, например из воздуха в воду, падает плоская световая волна. Волновая поверхность АС перпендикулярна лучам и , поверхности раздела сред МN сначала достигает луч , а луч достигнет этой же поверхности спустя промежуток времени ∆t, который будет равен пути СВ, деленному на скорость света в первой среде .

Поэтому в момент времени, когда вторичная волна в точке В только начнет возбуждаться, волна от точки А уже имеет вид полусферы радиусом АD, который равен скорости света во второй среде на ∆t: АD = ·∆t, то есть принцип Гюйгенса в наглядном действии. Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред, в данном случае это плоскость ВD, она является огибающей вторичных волн. Угол падения α луча равен углу САВ в треугольнике АВС, стороны одного из этих углов перпендикулярны сторонам другого. Следовательно, СВ будет равно скорости света в первой среде на ∆t

СВ = ·∆t = АВ·sin α

В свою очередь, угол преломления будет равен углу АВD в треугольнике АВD, поэтому:

АD = ·∆t = АВ·sin γ

Разделив почленно выражения друг на друга, получим:

n - постоянная величина, которая не зависит от угла падения.

Мы получили закон преломления света, синус угла падения к синусу угла преломления есть величина постоянная для данных двух сред и равная отношению скоростей света в двух данных средах.

Кубический сосуд с непрозрачными стенками расположен так, что глаз наблюдателя не видит его дна, но полностью видит стенку сосуда СD. Какое количество воды нужно налить в сосуд, чтобы наблюдатель смог увидеть предмет F, находящийся на расстоянии b = 10 см от угла D? Ребро сосуда α = 40 см (рис. 9).

Что очень важно при решении этой задачи? Догадаться, что так как глаз не видит дна сосуда, но видит крайнюю точку боковой стенки, а сосуд представляет из себя куб, то угол падения луча на поверхность воды, когда мы ее нальем, будет равен 45 0 .

Рис. 9. Задача ЕГЭ

Луч падает в точку F, это значит, что мы видим четко предмет, а черным пунктиром изображен ход луча, если бы не было воды, то есть до точки D. Из треугольника NFК тангенс угла β, тангенс угла преломления, - это отношение противолежащего катета к прилежащему или, исходя из рисунка, h минус b, деленное на h.

tg β = = , h - это высота жидкости, которую мы налили;

Наиболее интенсивное явление полного внутреннего отражения используется в волоконных оптических системах.

Рис. 10. Волоконная оптика

Если в торец сплошной стеклянной трубки направить пучок света, то после многократного полного внутреннего отражения пучок выйдет с противоположной стороны трубки. Получается, что стеклянная трубка - проводник световой волны или волновод. Это произойдет независимо от того, прямая это трубка или изогнутая (Рис. 10). Первые световоды, это второе название волноводов, использовались для подсвечивания труднодоступных мест (при проведении медицинских исследований, когда свет подается на один конец световода, а второй конец освещает нужное место). Основное применение - это медицина, дефектоскопия моторов, однако наибольшее применение такие волноводы получили в системах передачи информации. Несущая частота при передаче сигнала световой волной в миллион раз превышает частоту радиосигнала, это значит, что количество информации, которое мы можем передать при помощи световой волны, в миллионы раз больше количества информации, передающейся радиоволнами. Это прекрасная возможность передачи огромной информации простым и недорогим способом. Как правило, информация по волоконному кабелю передается при помощи лазерного излучения. Волоконная оптика незаменима для быстрой и качественной передачи компьютерного сигнала, содержащего большой объем передаваемой информации. А в основе всего этого лежит такое простое и обычное явление, как преломление света.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Edu.glavsprav.ru ().
  2. Nvtc.ee ().
  3. Raal100.narod.ru ().
  4. Optika.ucoz.ru ().

Домашнее задание

  1. Дать определение преломления света.
  2. Назовите причину преломления света.
  3. Назовите самые востребованные применения полного внутреннего отражения.

используется в так называемой волоконной оптике. Волоконной оптикой называется раздел оптики, в котором рассматривают передачу светового излучения по волоконно-оптическим световодам. Волоконно-оптические световоды представляют собой систему отдельных прозрачных волокон, собранных в пучки (жгуты). Свет, попадая внутрь прозрачного волокна, окруженного веществом с меньшим показателем преломления, многократно отражается и распространяется вдоль волокна (см. рис. 5.3).

1) В медицине и ветеринарной диагностике световоды используются главным образом для освещения внутренних полостей и передачи изображения.

Одним из примеров использования волоконной оптики в медицине является эндоскоп – специальный прибор для осмотра внутренних полостей (желудок, прямая кишка и др.). Одной из разновидностей таких приборов является волоконный гастроскоп . С его помощью можно не только визуально осмотреть желудок, но и произвести необходимые снимки с целью диагностики.

2) С помощью световодов также осуществляется передача лазерного излучения во внутренние органы с целью лечебного воздействия на опухоли.

3) Волоконная оптика нашла широкое применение и в технике. В связи с быстрым развитием информационных систем в последние годы возникла необходимость в качественной и быстрой передачи информации по каналам связи. С этой целью используется передача сигналов по лазерному лучу, распространяющемуся по волоконно-оптическим световодам.


ВОЛНОВЫЕ СВОЙСТВА СВЕТА

ИНТЕРФЕРЕНЦИЯ СВЕТА.

Интерференция – одно из ярких проявлений волновой природы света. Это интересное и красивое явление наблюдается при определенных условиях при наложении двух или нескольких световых пучков. С интерференционными явлениями мы сталкиваемся довольно часто: цвета масляных пятен на асфальте, окраска замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков – все это проявление интерференции света.

ИНТЕРФЕРЕНЦИЯ СВЕТА - сложение в пространстве двух или нескольких когерентных световых волн, при котором в разных его точках получается усиление или ослабление амплитуды результирующей волны.



Когерентность.

Когерентностью называется согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов, т.е. волн с одинаковой частотой и постоянной во времени разностью фаз.

Монохроматические волны (волны одной длины волны) - являются когерентными.

Так как реальные источники не дают строго монохроматического света, то волны, излучаемые любыми независимыми источниками света всегда некогерентны . В источнике свет излучается атомами, каждый из которых испускает свет лишь в течение времени ≈ 10 -8 с. Только в течение этого времени волны, испускаемые атомом имеют постоянные амплитуду и фазу колебаний. Но получить когерентные волны можно, разделив луч света, излучаемым одним источником, на 2 световые волны и после прохождения различных путей снова их соединить. Тогда разность фаз будет определяться разностью хода волн: при постоянной разности ходаразность фаз тоже будет постоянной .

УСЛОВИЕ ИНТЕРФЕРЕНЦИОННОГО МАКСИМУМА :

Если оптическая разность хода ∆ в вакууме равначетному числу полуволн или (целому числу длин волн)

(4.5)

то и колебания, возбуждаемые в точке M , будут происходить в одинаковой фазе .

УСЛОВИЕ ИНТЕРФЕРЕНЦИОННОГО МИНИМУМА.

Если оптическая разность хода ∆ равна нечетному числу полуволн

(4.6)

то и колебания, возбуждаемые в точке M , будут происходить в противофазе .

Типичным и распространенным примером интерференции света – мыльная пленка

Применение интерференции – просветление оптики: Часть света при прохождении через линзы отражается (до 50% в сложных оптических системах). Сущность метода просветления – поверхности оптических систем покрывают тонкими пленками, создающие интерференционные явления. Толщина пленки d=l/4 падающего света, тогда отраженный свет имеет разность хода , что соответствует минимуму интерференции

ДИФРАКЦИЯ СВЕТА

Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от прямолинейного .

Возможность наблюдения дифракции зависит от соотношения длины волны света и размера препятствий (неоднородностей)

Дифракция Фраунгофера на дифракционной решетке.

Одномерная дифракционная решетка - система параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками.

Суммарная дифракционная картина есть результат взаимной интерференции волн, идущих от всех щелей - в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

Если a - ширина каждой щели(MN) ; b - ширина непрозрачных участков между щелями (NC) , то величина d = a+ b называется постоянной (периодом) дифракционной решетки .

где N 0 - число щелей, приходящееся на единицу длины.

Разности хода ∆ лучей (1-2) и (3-4) равна СF

1. . УСЛОВИЕ МИНИМУМОВ Если разность хода CF = (2n+1)l/2 – равна нечетному числу длин полуволн, то колебания лучей 1-2 и 3-4 будут проходить в противофазе, и они взаимно погасятся освещенности :

n = 1,2,3,4… (4.8)

Мы указывали в § 81, что при падении света на границу раздела двух сред световая энергия делится на две части: одна часть отражается, другая часть проникает через границу раздела во вторую среду. На примере перехода света из воздуха в стекло, т. е. из среды, оптически менее плотной, в среду, оптически более плотную, мы видели, что доля отраженной энергии зависит от угла падения. В этом случае доля отраженной энергии сильно возрастает по мере увеличения угла падения; однако даже при очень больших углах падения, близких к , когда световой луч почти скользит вдоль поверхности раздела, все же часть световой энергии переходит во вторую среду (см. §81, табл. 4 и 5).

Новое интересное явление возникает, если свет, распространяющийся в какой-либо среде, падает на границу раздела этой среды со средой, оптически менее плотной, т, е. имеющей меньший абсолютный показатель преломления. Здесь также доля отраженной энергии возрастает с увеличением угла падения, однако возрастание идет по иному закону: начиная с некоторого угла падения, вся световая энергия отражается от границы раздела. Это явление носит название полного внутреннего отражения.

Рассмотрим снова, как и в §81, падение света на границу раздела стекла и воздуха. Пусть световой луч падает из стекла на границу раздела под различными углами паления (рис. 186). Если измерить долю отраженной световой энергии и долю световой энергии, прошедшей через границу раздела, то получаются величины, приведенные в табл. 7 (стекло, так же как и в табл. 4, имело показатель преломления ).

Рис. 186. Полное внутреннее отражение: толщина лучей соответствует доле отряженной или прошедшей через границу раздела световой энергии

Угол падения , начиная с которого вся световая энергия отражается от границы раздела, называется предельным углом полного внутреннего отражения. У стекла, для которого составлена табл. 7 (), предельный угол равен приблизительно .

Таблица 7. Доли отраженной энергии для различных углов падения при переходе света из стекла в воздух

Угол падения

Угол преломления

Доля отраженной энергии (в %)

Обратим внимание, что при падении света на границу раздела под предельным углом угол преломления равен , т. е. в формуле, выражающей для данного случая закон преломления,

при мы должны положить или . Отсюда находим

При углах падения, больших преломленного луча не существует. Формально это следует из того, что при углах падения, больших из закона преломления для получаются значения, большие единицы, что, очевидно, невозможно.

В табл. 8 приведены предельные углы полного внутреннего отражения для некоторых веществ, показатели преломления которых приведены в табл. 6. Нетрудно убедиться в справедливости соотношения (84.1).

Таблица 8. Предельный угол полного внутреннего отражения на границе с воздухом

Вещество

Сероуглерод

Стекло (тяжелый флинт)

Глицерин

Полное внутреннее отражение можно наблюдать на границе воздушных пузырьков в воде. Они блестят потому, что падающий на них солнечный свет полностью отражается, не проходя внутрь пузырьков. Это особенно заметно на тех воздушных пузырьках, которые всегда имеются на стеблях и листьях подводных растений и которые на солнце кажутся сделанными из серебра, т. е. из материала, очень хорошо отражающего свет.

Полное внутреннее отражение находит себе применение в устройстве стеклянных поворотных и оборачивающих призм, действие которых понятно из рис. 187. Предельный угол для призмы составляет в зависимости от показателя преломления данного сорта стекла; поэтому применение таких призм не встречает затруднений в отношении подбора углов входа и выхода световых лучей. Поворотные призмы с успехом выполняют функции зеркал и выгодны тем, что их отражающие свойства остаются неизменными, тогда как металлические зеркал;: тускнеют с течениием времени из-за окисления металла. Надо заметить, что оборачивающая призма проще по устройству эквивалентной ей поворотной системы зеркал. Поворотные призмы применяются, в частности, в перископах.

Рис. 187. Ход лучей в стеклянной поворотной призме (а), оборачивающей призме (б) и в изогнутой пластмассовой трубке – световоде (в)

    На рисунке а показан нормальный луч, который проходит границу «воздух — плексиглас» и выходит из плексигласовой пластины, не претерпевая никакого отклонения при прохождении двух границ между плексигласом и воздухом. На рисунке б показан луч света, входящий в полукруглую пластину нормально без отклонения, но составляющий угол у с нормалью в точке О внутри пластины плексигласа. Когда луч покидает более плотную среду (плексиглас), скорость его распространения в менее плотной среде (воздухе) увеличивается. Поэтому он преломляется, составляя угол х по отношению к нормали в воздухе, который больше, чем у.

    Исходя из того что n = sin (угол, который луч составляет с нормалью в воздухе) / sin (угол, который луч составляет с нормалью в среде), плексигласа n n = sin x/sin у. Если производится несколько измерений х и у, то показатель преломления плексигласа может быть подсчитан усреднением результатов для каждой пары величин. Угол у может быть увеличен путем перемещения источника света по дуге круга с центром в точке О.

    Результатом этого является увеличение угла х до тех пор, пока не достигается положение, показанное на рисунке в , т. е. пока х не станет равен 90 о . Ясно, что угол х не может быть больше. Угол, который теперь луч образует с нормалью внутри плексигласа, называется критическим или предельным углом с (это тот угол падения на границу из более плотной среды в менее плотную, когда угол преломления в менее плотной среде составляет 90°).

    Обычно наблюдается слабый отраженный луч, так же как и яркий луч, который преломляется вдоль прямого края пластины. Это является следствием частичного внутреннего отражения. Заметьте также, что когда используется белый свет, то свет, появляющийся вдоль прямого края, разлагается на цвета спектра. Если источник света продвинут далее вокруг дуги, как на рисунке г , так что I внутри плексигласа становится больше критического угла с и преломления на границе двух сред не происходит. Вместо этого луч испытывает полное внутреннее отражение под углом r по отношению к нормали, где r = i.

    Чтобы произошло полное внутреннее отражение , угол падения i должен быть измерен внутри более плотной среды (плексигласа) и он должен быть больше критического угла с. Заметьте, что закон отражения также справедлив для всех углов падения больше критического угла.

    Критический угол бриллианта составляет лишь 24°38". Его «высверк», таким образом, зависит от той легкости, с которой происходит множественное полное внутреннее отражение, когда он освещается светом, что в большой мере зависит от искусной огранки и полировки, усиливающей этот эффект. Ранее было определено, что n = 1 /sin с, поэтому точное измерение критического угла с позволит определить n.

    Исследование 1. Определить n для плексигласа методом нахождения критического угла

    Поместите полукруглую пластину плексигласа в центре большого листа белой бумаги и тщательно обведите ее очертания. Найдите среднюю точку О прямого края пластины. При помощи транспортира постройте нормаль NO, перпендикулярную этому прямому краю в точке О. Вновь поместите пластину в ее очертания. Передвигайте источник света вокруг дуги влево от NO, все время направляя падающий луч на точку О. Когда преломленный луч пойдет вдоль прямого края, как показано на рисунке, отметьте путь падающего луча тремя точками Р 1 , Р 2 , и P 3 .

    Временно уберите пластину и соедините три эти точки прямой линией, которая должна пройти через О. При помощи транспортира измерьте критический угол с между прочерченным падающим лучом и нормалью. Вновь аккуратно поместите пластину в ее очертания и повторите проделанное прежде, но на этот раз двигайте источник света вокруг дуги вправо от NO, непрерывно направляя луч на точку О. Запишите два измеренных значения с в таблицу результатов и определите среднее значение критического угла с. Затем определите показатель преломления n n для плексигласа по формуле n n = 1 /sin с.

    Прибор для исследования 1 может быть также использован для того, чтобы показать, что для лучей света, распространяющихся в более плотной среде (плексиглас) и падающих на границу раздела «плексиглас — воздух» под углами, большими критического угла с, угол падения i равен углу отражения r.

    Исследование 2. Проверить закон отражения света для углов падения, больших критического угла

    Поместить полукруглую пластину плексигласа на большой лист белой бумаги и тщательно обведите ее очертания. Как и в первом случае, найдите среднюю точку О и постройте нормаль NO. Для плексигласа критический угол с = 42°, следовательно, углы падения i > 42° больше критического угла. При помощи транспортира постройте лучи под углами 45°, 50°, 60°, 70° и 80° к нормали NO.

    Вновь аккуратно поместите пластину плексигласа в ее очертания и направьте луч света из источника света вдоль линии 45°. Луч направится к точке О, отразится и появится с дугообразной стороны пластины по другую сторону от нормали. Отметьте три точки P 1 , Р 2 и Р 3 на отраженном луче. Временно уберите пластину и соедините три точки прямой линией, которая должна пройти через точку О.

    При помощи транспортира измерьте угол отражения r между и отраженным лучом, записав результаты в таблицу. Аккуратно поместите пластину в ее очертания и повторите проделанное для углов 50°, 60°, 70° и 80° к нормали. Запишите значение r в соответствующее место таблицы результатов. Постройте график зависимости угла отражения r от угла падения i. Прямолинейный график, построенный в диапазоне углов падения от 45° до 80°, будет достаточен, чтобы показать, что угол i равен углу r.

Для начала немного пофантазируем. Представьте жаркий летний день до нашей эры, первобытный человек при помощи остроги охотится на рыбу. Замечает ее положение, целится и наносит удар почему-то вовсе не туда, где была видна рыба. Промахнулся? Нет, в руках у рыбака добыча! Все дело в том, что наш предок интуитивно разбирался в теме, которую мы будем изучать сейчас. В повседневной жизни мы видим, что ложка, опущенная в стакан с водой, кажется кривой, когда мы смотрим через стеклянную банку - предметы кажутся искривленными. Все эти вопросы мы рассмотрим на уроке, тема которого: «Преломление света. Закон преломления света. Полное внутренне отражение».

На предыдущих уроках мы говорили о судьбе луча в двух случаях: что будет, если луч света распространяется в прозрачно однородной среде? Правильный ответ - он будет распространяться прямолинейно. А что будет, когда луч света падает на границу раздела двух сред? На прошлом уроке мы говорили об отраженном луче, сегодня мы рассмотрим ту часть светового пучка, которая поглощается средой.

Какова же будет судьба луча, который проник из первой оптически прозрачной среды, во вторую оптически прозрачную среду?

Рис. 1. Преломление света

Если луч падает на границу раздела двух прозрачных сред, то часть световой энергии возвращается в первую среду, создавая отраженный пучок, а другая часть проходит внутрь во вторую среду и при этом, как правило, изменяет свое направление.

Изменение направления распространения света в случае его прохождения через границу раздела двух сред называют преломлением света (рис. 1).

Рис. 2. Углы падения, преломления и отражения

На рисунке 2 мы видим падающий луч, угол падания обозначим α. Луч, который будет задавать направление преломленного пучка света, будем называть преломленным лучом. Угол между перпендикуляром к границе раздела сред, восстановленным из точки падения, и преломленным лучом называют углом преломления, на рисунке это угол γ. Для полноты картины дадим еще изображение отображенного луча и, соответственно, угла отражения β. Какова же связь между углом падения и углом преломления, можно ли предсказать, зная угол падения и то, с какой среды в какую перешел луч, каким будет угол преломления? Оказывается можно!

Получим закон, количественно описывающий зависимость между углом падения и углом преломления. Воспользуемся принципом Гюйгенса, который регламентирует распространение волны в среде. Закон состоит из двух частей.

Падающий луч, преломленный луч и перпендикуляр, восстановленный в точку падения, лежат в одной плоскости .

Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равна отношению скоростей света в этих средах.

Этот закон называют законом Снеллиуса, в честь голландского ученого, впервые его сформулировавшего. Причина преломления - в разнице скоростей света в разных средах. Убедиться в справедливости закона преломления можно, экспериментально направляя луч света под разными углами на границу раздела двух сред и измеряя углы падения и преломления. Если менять эти углы, измерять синусы и находить отношения синусов этих углов, мы убедимся в том, что закон преломления действительно справедлив.

Доказательства закона преломления при помощи принципа Гюйгенса - еще одно подтверждение волновой природы света.

Относительный показатель преломления n 21 показывает, во сколько раз скорость света V 1 в первой среде отличается от скорости света V 2 во второй среде.

Относительный показатель преломления - это наглядная демонстрация того факта, что причина изменения направления света при переходе из одной среды в другую - это разная скорость света в двух средах. Часто для характеристики оптических свойств среды пользуются понятием «оптическая плотность среды» (рис. 3).

Рис. 3. Оптическая плотность среды (α > γ)

Если луч переходит из среды с большей скоростью света в среду с меньшей скоростью света, то, как видно из рисунка 3 и закона преломления света, он будет прижиматься к перпендикуляру, то есть угол преломления меньше, чем угол падения. В этом случае говорят, что луч перешел из менее плотной оптической среды в более оптически плотную среду. Пример: из воздуха в воду; из воды в стекло.

Возможна и обратная ситуация: скорость света в первой среде меньше скорости света во второй среде (рис. 4).

Рис. 4. Оптическая плотность среды (α < γ)

Тогда угол преломления будет больше угла падения, а про такой переход скажут, что он совершен из оптически более плотной в менее оптически плотную среду (из стекла в воду).

Оптическая плотность двух сред может отличаться достаточно существенно, таким образом, становится возможна ситуация, приведенная на фотографии (рис. 5):

Рис. 5. Отличие оптической плотности сред

Обратите внимание, насколько смещена голова относительно туловища, находящегося в жидкости, в среде с большей оптической плотностью.

Однако относительный показатель преломления - не всегда удобная для работы характеристика, потому что он зависит от скоростей света в первой и во второй средах, а вот таких сочетаний и комбинаций двух сред может быть очень много (вода - воздух, стекло - алмаз, глицерин - спирт, стекло - вода и так далее). Таблицы были бы очень громоздкими, работать было бы неудобно, и тогда ввели одну абсолютную среду, по сравнению с которой сравнивают скорость света в других средах. В качестве абсолюта был выбран вакуум и скорости света сравниваются со скоростью света в вакууме.

Абсолютный показатель преломления среды n - это величина, которая характеризует оптическую плотность среды и равна отношению скорости света С в вакууме к скорости света в данной среде.

Абсолютный показатель преломления удобнее для работы, ведь мы скорость света в вакууме знаем всегда, она равна 3·10 8 м/с и является универсальной физической постоянной.

Абсолютный показатель преломления зависит от внешних параметров: температуры, плотности, а также от длины волны света, поэтому в таблицах обычно указывают средний показатель преломления для данного диапазона длин волн. Если сравнить показатели преломления воздуха, воды и стекла (Рис. 6), то видим, что у воздуха показатель преломления близок к единице, поэтому мы и будем его брать при решении задач за единицу.

Рис. 6. Таблица абсолютных показателей преломления для разных сред

Несложно получить связь абсолютного и относительного показателя преломления сред.

Относительный показатель преломления , то есть для луча, переходящего из среды один в среду два, равен отношению абсолютного показателя преломления во второй среде к абсолютному показателю преломления в первой среде.

Например: = ≈ 1,16

Если абсолютные показатели преломления двух сред практически одинаковы, это значит, что относительный показатель преломления при переходе из одной среды в другую будет равен единице, то есть луч света фактически не будет преломляться. Например, при переходе из анисового масла в драгоценный камень берилл свет практически не отклонится, то есть будет вести себя так, как при прохождении анисового масла, так как показатель преломления у них 1,56 и 1,57 соответственно, таким образом, драгоценный камень можно как бы спрятать в жидкости, его просто не будет видно.

Если налить воду в прозрачный стакан и посмотреть через стенку стакана на свет, то мы увидим серебристый блеск поверхности вследствие явления полного внутреннего отражения, о котором сейчас пойдет речь. При переходе луча света из более плотной оптической среды в менее плотную оптическую среду может наблюдаться интересный эффект. Для определенности будем считать, что свет идет из воды в воздух. Предположим, что в глубине водоема находится точечный источник света S, испускающий лучи во все стороны. Например, водолаз светит фонариком.

Луч SО 1 падает на поверхность воды под наименьшим углом, этот луч частично преломляется - луч О 1 А 1 и частично отражается назад в воду - луч О 1 В 1 . Таким образом, часть энергии падающего луча передается преломленному лучу, а оставшаяся часть энергии - отраженному лучу.

Рис. 7. Полное внутреннее отражение

Луч SО 2 , чей угол падения больше, также разделяется на два луча: преломленный и отраженный, но энергия исходного луча распределяется между ними уже по-другому: преломленный луч О 2 А 2 будет тусклее, чем луч О 1 А 1 , то есть получит меньшую долю энергии, а отраженный луч О 2 В 2 , соответственно, будет ярче, чем луч О 1 В 1 , то есть получит большую долю энергии. По мере увеличения угла падения прослеживается все та же закономерность - все большая доля энергии падающего луча достается отраженному лучу и все меньшая - преломленному лучу. Преломленный луч становится все тусклее и в какой-то момент исчезает совсем, это исчезновение происходит при достижении угла падения, которому отвечает угол преломления 90 0 . В данной ситуации преломленный луч ОА должен был бы пойти параллельно поверхности воды, но идти уже нечему - вся энергия падающего луча SО целиком досталась отраженному лучу ОВ. Естественно, что при дальнейшем увеличении угла падения преломленный луч будет отсутствовать. Описанное явление и есть полное внутреннее отражение, то есть более плотная оптическая среда при рассмотренных углах не выпускает из себя лучи, все они отражаются внутрь нее. Угол, при котором наступает это явление, называется предельным углом полного внутреннего отражения.

Величину предельного угла легко найти из закона преломления:

= => = arcsin, для воды ≈ 49 0

Самым интересным и востребованным применением явления полного внутреннего отражения являются так называемые волноводы, или волоконная оптика. Это как раз тот способ подачи сигналов, который используется современными телекоммуникационными компаниями в сетях Интернет.

Мы получили закон преломления света, ввели новое понятие - относительный и абсолютный показатели преломления, а также разобрались с явлением полного внутреннего отражения и его применением, таким как волоконная оптика. Закрепить знания можно, разобрав соответствующие тесты и тренажеры в разделе урока.

Получим доказательство закона преломления света при помощи принципа Гюйгенса. Важно понимать, что причина преломления - это разность скоростей света в двух различных средах. Обозначим скорость света в первой среде V 1 , а во второй среде - V 2 (рис. 8).

Рис. 8. Доказательство закона преломления света

Пусть на плоскую границу раздела двух сред, например из воздуха в воду, падает плоская световая волна. Волновая поверхность АС перпендикулярна лучам и , поверхности раздела сред МN сначала достигает луч , а луч достигнет этой же поверхности спустя промежуток времени ∆t, который будет равен пути СВ, деленному на скорость света в первой среде .

Поэтому в момент времени, когда вторичная волна в точке В только начнет возбуждаться, волна от точки А уже имеет вид полусферы радиусом АD, который равен скорости света во второй среде на ∆t: АD = ·∆t, то есть принцип Гюйгенса в наглядном действии. Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред, в данном случае это плоскость ВD, она является огибающей вторичных волн. Угол падения α луча равен углу САВ в треугольнике АВС, стороны одного из этих углов перпендикулярны сторонам другого. Следовательно, СВ будет равно скорости света в первой среде на ∆t

СВ = ·∆t = АВ·sin α

В свою очередь, угол преломления будет равен углу АВD в треугольнике АВD, поэтому:

АD = ·∆t = АВ·sin γ

Разделив почленно выражения друг на друга, получим:

n - постоянная величина, которая не зависит от угла падения.

Мы получили закон преломления света, синус угла падения к синусу угла преломления есть величина постоянная для данных двух сред и равная отношению скоростей света в двух данных средах.

Кубический сосуд с непрозрачными стенками расположен так, что глаз наблюдателя не видит его дна, но полностью видит стенку сосуда СD. Какое количество воды нужно налить в сосуд, чтобы наблюдатель смог увидеть предмет F, находящийся на расстоянии b = 10 см от угла D? Ребро сосуда α = 40 см (рис. 9).

Что очень важно при решении этой задачи? Догадаться, что так как глаз не видит дна сосуда, но видит крайнюю точку боковой стенки, а сосуд представляет из себя куб, то угол падения луча на поверхность воды, когда мы ее нальем, будет равен 45 0 .

Рис. 9. Задача ЕГЭ

Луч падает в точку F, это значит, что мы видим четко предмет, а черным пунктиром изображен ход луча, если бы не было воды, то есть до точки D. Из треугольника NFК тангенс угла β, тангенс угла преломления, - это отношение противолежащего катета к прилежащему или, исходя из рисунка, h минус b, деленное на h.

tg β = = , h - это высота жидкости, которую мы налили;

Наиболее интенсивное явление полного внутреннего отражения используется в волоконных оптических системах.

Рис. 10. Волоконная оптика

Если в торец сплошной стеклянной трубки направить пучок света, то после многократного полного внутреннего отражения пучок выйдет с противоположной стороны трубки. Получается, что стеклянная трубка - проводник световой волны или волновод. Это произойдет независимо от того, прямая это трубка или изогнутая (Рис. 10). Первые световоды, это второе название волноводов, использовались для подсвечивания труднодоступных мест (при проведении медицинских исследований, когда свет подается на один конец световода, а второй конец освещает нужное место). Основное применение - это медицина, дефектоскопия моторов, однако наибольшее применение такие волноводы получили в системах передачи информации. Несущая частота при передаче сигнала световой волной в миллион раз превышает частоту радиосигнала, это значит, что количество информации, которое мы можем передать при помощи световой волны, в миллионы раз больше количества информации, передающейся радиоволнами. Это прекрасная возможность передачи огромной информации простым и недорогим способом. Как правило, информация по волоконному кабелю передается при помощи лазерного излучения. Волоконная оптика незаменима для быстрой и качественной передачи компьютерного сигнала, содержащего большой объем передаваемой информации. А в основе всего этого лежит такое простое и обычное явление, как преломление света.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Edu.glavsprav.ru ().
  2. Nvtc.ee ().
  3. Raal100.narod.ru ().
  4. Optika.ucoz.ru ().

Домашнее задание

  1. Дать определение преломления света.
  2. Назовите причину преломления света.
  3. Назовите самые востребованные применения полного внутреннего отражения.