Крутецкий математические способности. Математические способности. В.А. Крутецкий. Математические способности и личность

Исследование математических способностей в зарубежной психологии.

В исследование математических способностей внесли свой вклад и такие яркие представители определенных направлений в психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар.

Большое разнообразие направлений определило и большое разнообразие в подходе к исследованию математических способностей, в методических средствах и теоретических обобщениях.

Единственное, в чем сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Большое единство взглядов проявляют зарубежные исследователи по вопросу о врожденности или приобретенности математических способностей. Если и здесь различать два разных аспекта этих способностей - «школьные» и творческие способности, то в отношении вторых существует полное единство - творческие способности ученого-математика являются врожденным образованием, благоприятная среда необходима только для их проявления и развития. В отношении «школьных» (учебных) способностей зарубежные психологи высказываются не столь единодушно. Здесь, пожалуй, доминирует теория параллельного действия двух факторов - биологического потенциала и среды.

Основным вопросом в исследовании математических способностей (как учебных, так и творческих) за рубежом был и остается вопрос о сущности этого сложного психологического образования. В этом плане можно выделить три важные проблемы.

1. Проблема специфичности математических способностей. Существуют ли собственно математические способности как специфическое образование, отличное от категории общего интеллекта? Или математические способности есть качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Иначе говоря, можно ли утверждать, что математическая одаренность - это не что иное, как общий интеллект плюс интерес к математике и склонность заниматься ею?

2. Проблема структурности математических способностей. Является ли математическая одаренность унитарным (единым неразложимым) или интегральным (сложным) свойством? В последнем случае можно ставить вопрос о структуре математических способностей, о компонентах этого сложного психического образования.

3. Проблема типологических различий в математических способностях. Существуют ли различные типы математической одаренности или при одной и той же основе имеют место различия только в интересах и склонностях к тем или иным разделам математики?

7. Педагогические способности

Педагогическим способностями называют совокупность индивидуально-психологических особенностей личности учителя, отвечающих требованиям педагогической деятельности и определяющих успех в овладении этой деятельностью. Отличие педагогических способностей от педагогических умений заключается в том, что педагогические способности - это особенности личности, а педагогические умения - это отдельные акты педагогической деятельности, осуществляемые человеком на высоком уровне.

Каждая способность имеет свою структуру, в ней различают ведущие и вспомогательные свойства.

Ведущими свойствами в педагогических способностях являются:

педагогический такт;

наблюдательность;

любовь к детям;

потребность в передаче знаний.

Педагогический такт - это соблюдение педагогом принципа меры в общении с детьми в самых разнообразных сферах деятельности, умение выбрать правильный подход к учащимся.

Педагогический такт предполагает:

· уважение к школьнику и требовательность к нему;

· развитие самостоятельности учащихся во всех видах деятельности и твердое педагогическое руководство их работой;

· внимательность к психическому состоянию школьника и разумность и последовательность требований к нему;

· доверие к учащимся и систематическая проверка их учебной работы;

· педагогически оправданное сочетание делового и эмоционального характера отношений с учениками и др.

Педагогическая наблюдательность - это способность учителя, проявляемая в умении подмечать существенные, характерные, даже малозаметные свойства учащихся. По-другому можно сказать, что педагогическая наблюдательность - это качество личности педагога, заключающееся в высоком уровне развития способности концентрации внимания на том или ином объекте педагогического процесса.

способность математический педагогический

Собранный В. А. Крутецким материал позволил ему выстроить общую схему структуры математических способностей в школьном возрасте.

  1. Получение математической информации.

      Способность к формализованному восприятию математического материала, схватыванию формальной структуры задачи.

  2. Переработка математической информации.

      Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.

      Способность к быстрому и широкому обобщению математических объектов, отношений и действий.

      Способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.

      Гибкость мыслительных процессов в математической деятельности.

      Стремление к ясности, простоте, экономности и рациональности решений.

      Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).

  3. Хранение математической информации.

      Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним).

  4. Общий синтетический компонент.

      Математическая направленность ума.

Выделенные компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, целостную структуру, своеобразный синдром математической одаренности, математический склад ума.

Не входят в структуру математической одаренности те компоненты, наличие которых в этой системе не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее, степень их развития) определяют тип математического склада ума. Не являются обязательными в структуре математической одаренности следующие компоненты:

    Быстрота мыслительных процессов как временная характеристика.

    Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме).

    Память на цифры, числа, формулы.

    Способность к пространственным представлениям.

    Способность наглядно представить абстрактные математические отношения и зависимости.

Заключение.

Проблема математических способностей в психологии представляет обширное поле действия для исследователя. В силу противоречий между различными течениями в психологии, а также внутри самих течений, пока не может быть и речи о точном и строгом понимании содержания этого понятия.

Рассмотренные в данной работе книги подтверждают это заключение. Вместе с тем следует отметить неугасающий интерес к этой проблеме во всех течениях психологии, что подтверждает следующий вывод.

Практическая ценность исследований по этой теме очевидна: математическое образование играет ведущую роль в большинстве образовательных систем, а оно, в свою очередь, станет более эффективным после научного обоснования его основы – теории математических способностей.

Итак, как утверждал В. А. Крутецкий: «Задача всестороннего и гармонического развития личности человека делает совершенно необходимой глубокую научную разработку проблемы способности людей к тем или иным видам деятельности. Разработка этой проблемы представляет как теоретический, так и практический интерес».

Общая структура математических способностей (по В.А. Крутецкому)

В этом параграфе представлена общая структура математических способностей в школьном возрасте по В.А. Крутецкому. Она рассматривается исходя из основных этапов решения задач: I. получение математической информации; II. переработка математической информации; III. хранение математической информации. Каждому из этапов I - III соответствует одна или несколько математических способностей. Приведем описание каждой математической способности с выделением действий, которые присущи каждой способности и описание протоколов решения задач способными и неспособными учениками, описанные Вадимом Андреевичем Крутецким в книге .

Способности, необходимые для получения математической информации

Способность к формализованному восприятию математического материала, схватывания формальной структуры задачи

Характеристика способности. Эта математическая способность проявляется в стремлении к своеобразной формализации структуры математического материала в процессе его восприятия. Под формализацией понимается быстрое «схватывание» в конкретной задаче, в математическом выражении их формальной структуры, когда все содержательное (числовые данные, конкретное содержание) словно выпадает и остаются чистые соотношения между показателями, характеризующие принадлежность задачи или математического выражения к определенному типу. Формализованное восприятия - это своего рода обобщенное восприятие функциональных связей, отдельных от предметной и числовой формы, когда в конкретном воспринимается его общая структура.

выделять различные элементы в математическом материале задачи;

давать элементам математического материала задачи различную оценку;

систематизировать элементы математического материала задачи;

объединять элементы математического материала задачи в комплексы;

отыскивать отношения и функциональные зависимости элементов математического материала задачи.

Первые три действия направлены на восприятия математического материала задачи аналитически, другие же направлены на синтетическое восприятие математического материала задачи.

Особенности выполнения I этапа решения задач учащимися, обладающие этой способностью. Для выяснения особенности восприятия математического материала В.А. Крутецкий используется серия «Системы однотипных задач». Эта серия рассчитана на учащихся, еще незнакомых с формулами сокращенного умножения. Исследовалось, как учащиеся могут выделить основное, главное, существенное с точки зрения типа задачи, отвлечься от несущественного, второстепенного, от деталей. При помощи этой серии исследуется также процесс обобщения - подведение объектов под только что, сформировавшееся в своей основе понятия.

Рассмотрим решение одного из тестов серии «Системы однотипных задач» направленного на выяснения овладения этой способностью способными к математике и неспособными к математике учащимися. Серия представляет собой своеобразную «лестницу задач» одного и того же типа, от наиболее простой к весьма сложной. Выясняется, как сумеет испытуемый доказать, что данная задача, несмотря на ее внешнее отличие, принадлежит к тому же самому типу, и как, учитывая конкретные особенности задачи, он собирается решать ее по общей схеме решения задач установленного им типа.

Приведем наглядный пример, как справлялись с одной из задач этой серией способные к математике ученики и неспособные.

Способные ученики при решении задачи на применение формулу сокращенного умножения (a+b)2. Они легко выделяют существенные для данного типа моменты (сумма двух алгебраических выражений в квадрате), равно как и несущественные для данного типа (конкретная величина и характер алгебраических выражений, составляющие число a и b). Другими словами имела место своеобразная формализация структуры задачи при ее восприятии, когда задача (например, 6ах+1/2by)2 «схватывалась в такой форме: (+)2=.

Неспособные же учащиеся узкоограниченно представляли себе «первое» и «второе» число в этой формуле, им было трудно понять, что a и b обозначают любую величину и любое алгебраическое выражение. Поэтому они и не улавливали самостоятельно структурного «костяка» задачи.

Способности, необходимые для переработки математической информации

Способность к логическому рассуждению в сфере количественных и пространственных отношений, числовой и знаковой символики

Характеристика способности. Одной из особенности математики является алгоритмичность решения многих задач. Алгоритмом, как известно, называется определенное указание относительно того, какие операции и в какой последовательности надо выполнить, чтобы решить любую задачу некоторого типа. Алгоритм представляет собой обобщение, так как применим ко всем задачам соответствующего типа. Конечно, очень большое количество задач не алгоритмизируется и решается с помощью специальных, особых приемов. Поэтому способность находить пути решения, не подходящие под стандартное правило, является одной из существенных особенностей математического мышления.

Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действия:

логически рассуждают (доказывать, обосновывать);

оперируют специальными математическими знаками, условными символическими обозначениями количественных величин и отношений и пространственных свойств;

переводят на язык символов.

Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. Для выяснения этой способности применяется серия «Задачи на доказательство». Серия представляет собой систему однотипных задач, все усложняющихся доказательств.

Для примера возьмем решения задачи способным и неспособным учеником.

Вот как решал задачу способный ученик: «Доказать, что сумма любых трех последовательных чисел делится на 3 (при любом целом значении а)». Последовательные числа - это такие числа, когда каждое из последующих на единицу больше предыдущего, так кажется? Как же тут доказать? 2, 3 и 4 в сумме действительно делятся на 3; 12, 13, 14 тоже в сумме дают 39. Можно доказать так: сумма трех одинаковых чисел, разумеется, делится на 3. Да еще прибавляются 3 единицы (второе число на единицу, а третье - на две единицы больше первого), которые тоже делятся на 3. Можно и алгебраически доказать: х+(х+1)+(х+2)=3х+3=3(х+1). Последнее выражение всегда можно разделить на 3, каково бы ни было исходное число х.

Вот как справляется с подобной задачей неспособный ученик.

Задача. Задумайте любое число, умножьте его на число, больше задуманного на 6 и прибавить 9. Доказать, что полученный результат является квадратом.

Уч.: А что значит «является квадратом? Квадратом какого числа?

Эксп.: Есть числа, которые не являются квадратом какого-либо числа, например 13 или 20. А есть числа, которые являются результатом возведения в квадрат какого-либо числа, например 9 (т.е.3).

Уч.: Понятно. А здесь как доказывать?

Эксп.: Подумай. Примени, способ алгебраического доказательства. Сказано: «Задумайте любое число». Как в алгебре обозначается «любое число»?

Уч.: А теперь знаю: х(х+6)+9=х2+6х+9. Вот х2 и есть квадрат задуманного числа.

Эксп.: Ты взял только часть результата. А тебе нужно доказать, что весь полученный результат есть квадрат какого-то числа. Квадратом какого выражения является полученный тобой результат? Вспомни формулы сокращенного умножения?

Уч.: Знаю. Получится (х+3)2. (дает ответ не сразу).

Эксп.: Но всегда ли в результате получится квадрат?

Уч.: Не знаю.

Лишь после продолжительного разъяснения экспериментатора ответил: «По-моему, всегда, так как мы брали любое число».

Способность к быстрому и широкому обобщению математических объектов

Характеристика способности. Способность к обобщению математического материала рассматривается в двух планах: 1) как способность человека увидеть в частном, конкретном уже известном ему общее (подведение частного случая под известное общее понятие) и 2) способность увидеть в единичном, частном пока еще неизвестное общее (вывести общее из частных случаев, образовать понятие). Одно дело - увидеть возможность применение к данному частному случаю уже известной ученику формулы, другое - на основание частных случаев вывести формулу, еще неизвестную ученику.

Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действия:

видят сходную ситуацию в сфере числовой и знаковой символики (где применить);

владеют обобщенным типом решения, обобщенной схемой доказательства, рассуждения (что применить).

И в том и другом случае необходимо отвлечься от конкретного содержания и выделить сходное, общее и существенное в структурах объектов, отношений или действий.

Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. На выявление этой способности В.А. Крутецкий предлагает серию задач, которая уже использовалась для проверки математической способности - способность к формализованному восприятию математического материала.

Приведем пример решения одной из задачи этой серии. После решения примера на применение формулы «квадрат суммы» дается способному ученику для решения пример: (C+D+E)(E+C+D). Ученик применяет формулу и пишет (C+D+E)2 и соединяет два члена - (C+(D+E))2 после чего непосредственно применяет формулу и раскрывает скобки.

Неспособные к математике ученик, усвоив формулу (a+b)2 и принцип рассуждения приступает к решению примера (1+а3b2)2.

Эксп.: А вот этот пример можно решить по формуле сокращенного умножения?.

Уч.: Здесь что-то другое - и a и b справа и не разделяются плюсом… (пишет: ». Эксп.: «Куда же делась единица?. Ученик молчит.

Эксп.: Ну а реши такой пример: (2x+y)2.

Ученик пишет, повторяя вслух формулу: 4x2+22xy+y2=4x2+4x+y2.

Эксп.: Верно. Вот так же решай и предыдущую задачу.

Уч.: А здесь что-то другое… квадрат первого - это.

Эксп.: Давай рассуждать вместе. Чтобы применить формулу, надо убедиться, что мы имеем дело с квадратом суммы двух чисел. Тебе ясно, что это квадрат?

Уч.: Вот здесь (показывает) цифра 2 показывает, что-то, что в скобках, надо помножить само на себя.

Эксп.: Верно. А в скобках двучлен? Покажи, где первый член, первое «число».

Уч.: …или нет, что я говорю… между членами должен быть знак плюс. Тут нет первого члена, только второй.

В дальнейшем ученик все же решает данный пример с помощью экспериментатора.

Способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами

Характеристика способности. Наряду с развернутыми умозаключениями в умственной деятельности школьников при решении задач занимает определенное место и свернутые умозаключения, когда ученик не осознает правила, общего положения, в соответствии с которыми он фактически действует.

Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют действие - свертывание умозаключений.

То есть в процессе решения задач ученик не выполняет всей той цепи соображений и умозаключений, которые образуют полную, развернутую структуру решения.

Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. На выявление этой способности применяется серия «Система разнотипных задач». Приведем пример как способный ученик решал одну из задач этой серии.

Задача. Автомобиль прошел путь из А в Б со скоростью 20 км в час, а обратно со скоростью 30 км в час. Какова средняя скорость автомобиля за весь рейс?

Уч.: Ясно, что со скоростью 30 км в час он шел меньше времени, чем со скоростью 20 км в час (при одинаковом пути). А раз так, то средняя скорость не будет равна 25 км в час. Как же решить? (Дальнейший ход решения разбиваем на отдельные звенья.) Буду решать по рассуждению.

Скорость - это результат от деления пути на время. Значит, надо знать общий путь и общее время, затраченное на весь путь, и поделить общий путь на общее время.

Теперь ясно, как решить. Надо узнать весь пройденный путь. Если путь в один конец обозначим через х, то весь путь - 2х.

Теперь надо узнать время. Оно различно. Чтобы узнать время, надо поделить путь на скорость.

На путь туда потратили

А на путь обратно потрачено

А всего весь путь занял, значит, =

Делим теперь общий путь на общее количество часов:

2х: км в час.

Что касается неспособных, то у них не замечалось сколько-нибудь заметного свертывания даже в результате многих упражнений. На первых этапах овладения они постоянно путаются в громоздкой цепи умозаключений, которая с трудом, с помощью экспериментатора, закрепляется, постепенно превращается в относительно стройную систему. Ни о каком свертывании на этих этапах не может быть и речи, так как сам процесс рассуждения еще находится на стадии становления. Да и в дальнейшем они нуждались лишь в полном составе рассуждений.

Гибкость мыслительных процессов в математической деятельности

Характеристика способности. Эта математическая способность выражается в легком и свободном переключении с одной умственной операции на другую, в многообразие аспектов подходов к решению задач, в легкости перестройки сложившихся схем мышления и систем действий.

Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действие - переключаются на новый способ действия, т.е. с одной умственной операции на другую.

Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. На эту способность направлены серия тестов «Задачи, наталкивающие на «самоограничение»». В эту серию отобраны задачи на рассуждение, отличающиеся следующими способностями: либо их условие обычно воспринимается с ограничением, которого в действительности не существует, либо в процессе решения решающий невольно ограничивает себя некоторыми возможностями, неправомерно исключая друг друга. В том и другом случае непроизвольное ограничение приводит к мысли о невозможности решения задачи.

Способный ученик решает задачу «В прямоугольном треугольнике один катет 7 см. Определить две другие стороны, если они выражены целыми числами».

«Построить треугольник по одной стороне? Что-то странное…Правда, еще угол дан - прямой, но все равно нельзя… (чертит). Ну, вот же видно - сторона и угол постоянны, а вот сколько разных треугольников. Может быть, задача не решается? (Эксп.: Нет. Задача решается».) Странно… (чертит) Ну вот же ясно видно, что бесконечное количество решений (еще чертит). Что-то я не столько решаю, сколько пытаюсь доказать, что она не решается... Может быть, вариантов-то много, но все они выражаются дробными числами (еще раз читает условие). Может быть только один случай, когда выражаются целыми числами? Наверное, так - в условии об этом не говориться, но можно понять…Но тогда это надо доказать… Если гипотенуза а, а неизвестный катет b, то a2=49+b2 по Пифагору, а 49=a2-b2…Ну и что дальше? a+b=49/a-b. Чувствую, что это что-то даст…Если a и b - целые числа, то и их сумма - целое число…Ну вот, ясно все: значит, 49 делится на a-b без остатка. А 49 делится только на 7…Но a-b не может быть равно 7, так как тогда и треугольника не будет (гипотенуза в точности равна двум катетам - две стороны равны третий)…Где-то тут есть решение, я его упустил… Но ведь 49 делится не только 7, а и на 1, и на 49. Ну вот теперь решение в кармане: 49 тоже не может быть - гипотенуза будет больше, чем сумма катетов. Остается одно: a-b=1, a a+b=49. Получится 25 см. гипотенуза и 24 см катет».

Неспособных учеников отличает инертность, косность, скованность мысли в сфере математических отношений и действий, устойчивый, стереотипный характер действий, навязчивое удерживание в сознании предшествующего принципа решений, способа действий, оказывающего тормозящее влияние при необходимости перестроить действие, что определяет ярко выраженную затрудненность и переключении от одной умственной операции к другой, качественно иной.

Стремления к ясности, простоте решения, экономности и рациональности решения

Характеристика способности. Эта особенность математического мышления способных к математике учащихся тесно связана с предыдущей. Для способных учеников весьма характерно стремление к наиболее рациональным решениям задач, поиски наиболее ясного, кратчайшего, а, следовательно, и наиболее «изящного» пути к цели. Это выглядит как своеобразная тенденция к экономии мысли, выражающееся в поисках наиболее экономных путей решения задач.

Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действие - находят наиболее рациональное решение задачи.

Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. Эту способность Вадим Андреевич выяснял при помощи «Задачи на соображение логическое рассуждение». Для этого он сопоставлял реальный процесс рассуждения школьника с максимально развернутым. Сравнивал количество и характер «звеньев» в том и другом случае, они сопоставляются с характером и количеством звеньев действительно развернутой структуры.

Например, способный ученик решал задачу: «Найти наименьшее число, которое при деление на 3 дает остаток 1, при делении на 4 дает остаток 2, при делении на 5 дает в остатке 3 и при делении на 6 дает в остатке 4» Способный ученик прежде всего нашел наименьшее общее кратное данных чисел (60) и произнес: «60-2=58. Это число 58». По просьбе экспериментатора пояснил: «Я представил все числа и остатки столбиком и сразу увидел, что во всех случаях разница между делителем и остатком - 2. Значит, если добавить к искомому числу 2, то оно разделится на все числа без остатка. Наименьшее из таких чисел - 60. Но теперь уберем двойку - будем 58».

Неспособные учащиеся не обращают особого внимания на качество решения. Они прекращают работу после над задачей и не задаются вопросом: «А нельзя ли решить проще, яснее?».

Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении)

Характеристика способности. Под обратимостью мыслительного процесса понимается перестройка его направленности в смысле переключения с прямого на обратный ход мысли. Это понятие объединяет два разных, хотя и связанных друг с другом процесса.

Во-первых, это установление двухсторонних (или обратимых) ассоциаций (связей) АБ в противоположность односторонним связям типа АБ, функционирующим только в одном направлении.

Во-вторых, это обратимость мыслительного процесса в рассуждении, обратное направление мысли от результата, продукта к исходным данным, что имеет место, например, при переходе от прямой к обратной теореме.

Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действие - перестраивать мыслительный процесс с прямого на обратный ход мыслей.

Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. Для выяснения этой способности В.А. Крутецкий предлагал серию задач «Прямые и обратные задачи». В этой серии включены парные задачи - прямая и обратная. Обратными задачами условно называются те, которые по сравнению с исходными (прямыми) задачами при сохранении сюжета искомое входит в состав условия, а один или несколько элементов условия становятся искомыми.

Приведем пример как способные, и неспособные учащиеся решали эти задачи:

Способный ученик овладел типом решения по формуле «произведения суммы двух чисел на их разность равно разности квадратов этих чисел».

Ему предлагается разложить на множители выражение (x-y)2-25y8. Он тут говорит, что эта задача наоборот и тут уже есть разность квадратов и записывает выражение (x-y+5y4) (x-y-5y4). Свое решение он объясняет, что нужно подумать из чего получились квадраты и взять сумму этих чисел и помножить на разность.

Неспособный ученик с трудом, после большого количества упражнений, овладел способом решения задач по этой формуле.

Эксп.: Реши задачу 55=(ученик дает верный ответ). А теперь реши такую: какие числа надо перемножить, чтобы получить 25 (ученик дает верный ответ). Теперь смотри 55=25, а 25=55. Вторая задача обратная первой. Реши задачу (2x+y)(2x-y)= (ученик дает верный ответ). Правильно. Но если (2x+y)(2x-y)=4x2-4y2, то наоборот можно ли сказать, что 4x2-4y2= (2x+y)(2x-y)? (Ученик дает утвердительный ответ). А 9x2-4y2 чему равняется?

Уч.: Не знаю. Это какие-то чудные задачи. Мы такие не решали.

Эксп.: Да, не решали, но учимся решать. Вот ты подумай: чему равно произведение суммы двух чисел на их разность? Это ты знаешь.

Уч.: Произведение суммы двух чисел на их разность равняется квадрату первого минус квадрат второго.

Эксп.: Верно. А обратно можно сказать? Чему равна разность квадратов? Чему равно a2-b2?.

Уч.: a2-b2=(a+b)(a-b).

Эксп.: А 9x2-4y2 чему равно?

Уч.: (9x+4y)(9x-4y)…

Дальнейший ход беседы опускаем. Лишь после многократных пояснений и упражнений ученик научился решать задачи этого типа, да и только простейшие.

Способности, необходимые для хранения математической информации

Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним)

Характеристика способности. Сущность математической памяти заключается в обобщенном запоминании типовых схем рассуждений и действий. Что же касается памяти на конкретные данные, числовые параметры, то она «нейтральна» по отношению к математическим способностям.

Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действия:

запоминают типовые признаки задач и обобщенные способы их решения, схемы рассуждений, основные линии доказательств, логические схемы;

сохраняют в памяти типовые признаки задач и обобщенные способы их решения, схемы рассуждений, основные линии доказательств, логические схемы.

Особенности выполнения III этапа решения задач учащимися, обладающими данной способностью. Способные ученики в большинстве случаев довольно долго помнят тип решенной ими в свое время задачи, общий характер действий, но не помнят конкретных данных задачи, чисел. Неспособные, наоборот, помнят только конкретные числовые данные или конкретные факты, относящиеся к задаче. Если неспособный помнит, что решал «какую-то задачу с клетками и кроликами», или «что-то про рыбу, которая весит 2 пуда», то способный обычно гораздо чаще помнит тип задачи: «Решал задачу на различные сочетания частей целого - про рыбу, у которой хвост с головой весит столько-то, а голова с туловищем - столько-то, и хвост с туловищем - еще столько-то».

Выделенные способности тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, целостную структуру, своеобразный синдром математической одаренности, математический склад ума.

Не входят в структуру математической одаренности те способности, наличие которых в этой системе не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее, степень их развития) определяют тип математического склада ума. Не являются обязательными в структуре математической одаренности следующие компоненты:

Быстрота мыслительных процессов как временная характеристика.

Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме).

Память на цифры, числа, формулы.

Способность к пространственным представлениям.

Способность наглядно представить абстрактные математические отношения и зависимости.


Опыт работы учителя начальных классов МОАУ «СОШ № 15 г. Орска» Винниковой Л.А.

Развитие математических способностей учащихся начальных классов в процессе решения текстовых задач.

Опыт работы учителя начальных классов МОАУ «СОШ № 15 г. Орска» Винниковой Л.А. Составитель: Гринченко И. А., методист Орского филиала ИПКиППРО ОГПУ

Теоретическая база опыта:

Теории развивающего обучения (Л.В. Занков, Д.Б. Эльконин)

Психолого-педагогические теории Р. С. Немова, Б. М. Теплова, Л. С. Выготского, А. А. Леонтьева, С.Л. Рубинштейна, Б. Г. Ананьева, Н. С. Лейтеса, Ю. Д. Бабаевой, В. С. Юркевич о развитии математических способностей в процессе специальным образом организованной учебной деятельности.

Крутецкий В. А. Психология математических способностей школьников. М.: Издат. Институт практической психологии; Воронеж: Изд-во НПО МОДЭК, 1998. 416 с.

Развитие математических способностей учащихся последовательно и целенаправленно.

Все исследователи, занимавшиеся проблемой математических способностей (А. В. Бруш-линский А. В. Белошистая, В. В. Давыдов, И. В. Дубровина, З. И Калмыкова, Н. А. Менчинская, А. Н. Колмогоров, Ю. М. Колягин, В. А. Крутецкий, Д. Пойа, Б. М. Теплов, А.Я. Хинчин) при всей разновидности мнений отмечают прежде всего специфические особенности психики матема-тически способного ребёнка (а также профессионального математика), в частности гибкость, глубину, целенаправленность мышления. А. Н. Колмогоров, И. В. Дубровина своими исследова-ниями доказали, что математические способности проявляются довольно рано и требуют неп-рерывного упражнения. В. А. Крутецкий в книге «Психология математических способностей школьников» различает девять компонентов математических способностей, формирование и развитие которых происходит уже в начальных классах.

Использование материала учебника «Моя математика» Т.Е. Демидовой, С. А. Козловой, А. П. Тонких позволяет выявить и развить математические и творческие способности учащихся, сформировать устойчивый интерес к математике.

Актуальность:

В младшем школьном возрасте происходит бурное развитие интеллекта. Возможность развития способностей очень высока. Развитие математических способностей младших школьников на сегодняшний день остаётся наименее разработанной методической проблемой. Многие педагоги и психологи высказывают мнение о том, что начальная школа является «зоной повышенного риска», так как именно на этапе начального обучения в силу преимущественной ориентации учителей на усвоение знаний, умений и навыков происходит блокирование развития способностей у многих детей. Важно не упустить этот момент и найти эффективные пути развития способнос-тей детей. Несмотря на постоянное совершенствование форм и методов работы, в развитии математических способностей в процессе решения задач есть существенные пробелы. Это можно объяснить следующими причинами:

Излишняя стандартизация и алгоритмизация методов решения задач;

Недостаточное включение учащихся в творческий процесс решения задачи;

Несовершенство работы учителя по формированию умения учащихся проводить содержательный анализ задачи, выдвигать гипотезы по планированию решения, рационально определяя шаги.

Актуальность исследования проблемы развития математических способностей младших школьников объясняется:

Потребностью общества в творчески мыслящих людях;

Недостаточной степенью разработанности в практическом методическом плане;

Необходимостью обобщения и систематизации опыта прошлого и настоящего по развитию математических способностей в едином направлении.

В результате целенаправленной работы по развитию математических способностей у учащихся повышается уровень успеваемости и качества знаний, развивается интерес к предмету.

Основополагающие принципы педагогической системы.

Продвижение в изучении материала быстрыми темпами.

Ведущая роль теоретических знаний.

Обучение на высоком уровне трудности.

Работа над развитием всех учащихся.

Осознание школьниками процесса обучения.

Развитие способности и потребности самостоятельно находить решение не встречавшихся ранее учебных и внеучебных задач.

Условия возникновения и становления опыта:

Эрудиция, высокий интеллектуальный уровень учителя;

Творческий поиск методов, форм и приёмов, обеспечивающих повышение уровня математических способностей учащихся;

Умение прогнозировать положительное продвижение учащихся в процессе использования комплекса упражнений по развитию математических способностей;

Желание учащихся узнать новое в математике, участвовать в олимпиадах, конкурсах, интеллектуальных играх.

Сущностью опыта является деятельность учителя по созданию условий для активной, сознательной, творческой деятельности обучающихся; совершенствованию взаимодействия учителя и учащихся в процессе решения текстовых задач; развитию математических способностей школьников и воспитанию у них трудолюбия, работоспособности, требовательности к себе. Выявляя причины успехов и неудач учеников, учитель может определить, какие способности или неспособности влияют на деятельность учащихся и в зависимости от этого целенаправленно планировать дальнейшую работу.

Для осуществления качественной работы по развитию математических способностей применяются следующие инновационные педагогические продукты педагогической деятельности:

Факультативный курс «Нестандартные и занимательные задачи»;

Использование ИКТ технологий;

Комплекс упражнений для развития всех компонентов математических способностей, которые можно сформировать в начальных классах;

Цикл занятий по развитию способности рассуждать.

Задачи, способствующие достижению данной цели:

Постоянное стимулирование и развитие познавательного интереса обучающегося к предмету;

Активизация творческой деятельности детей;

Развитие способности и стремления к самообразованию;

Сотрудничество учителя и обучающегося в процессе обучения.

Внеурочная работа создает дополнительный стимул для творчества обучающихся, развития их математических способностей.

Новизна опыта заключается в том, что:

Изучены специфические условия деятельности, способствующие интенсивному развитию математических способностей учащихся, найдены резервы повышения уровня математических способностей для каждого ученика;

Учитываются индивидуальные способности каждого ребёнка в процессе обучения;

Выявлены и описаны в полном объёме наиболее эффективные формы, методы и приёмы, направленные на развитие математических способностей учащихся в процессе решения текстовых задач;

Предложен комплекс упражнений для развития компонентов математических способностей учащихся начальных классов;

Разработаны требования к упражнениям, которые своим содержанием и формой стимулировали бы развитие математических способностей.

Это даёт возможность сделать доступным для учащихся усвоение новых видов задач при меньшей затрате времени и большей эффективностью. Часть задач, упражнений, некоторые проверочные работы для определения продвижения детей в развитии математических способностей разрабатывались по ходу работы с учётом индивидуальных особенностей учащихся.

Продуктивность.

Развитие математических способностей учащихся достигается при последовательной и целенаправленной работе путём разработки методов, форм и приёмов, направленных на решение текстовых задач. Такие формы работы обеспечивают повышение уровня математических способностей большинства учащихся, повышают продуктивность и творческое направление деятельности. У большинства учащихся повышается уровень математических способностей, развиваются все компоненты математических способностей, которые можно сформировать в начальных классах. Учащиеся показывают устойчивый интерес и положительное отношение к предмету, высокий уровень знаний по математике, успешно выполняют задания олимпиадного и творческого характера.

Трудоёмкость.

Трудоёмкость опыта определяется его переосмысливанием с позиции творческой самореализации личности ребенка в учебно-познавательной деятельности, отбором оптимальных методов и приёмов, форм, средств организации учебного процесса с учетом индивидуально-творческих возможностей учащихся.

Возможность внедрения.

Опыт решает как узко-методические, так и общепедагогические задачи. Опыт интересен учителям начальных и старших классов, студентам ВУЗов, родителям и может использоваться в любой деятельности, где требуется оригинальность, нешаблонность мышления.

Система работы учителя.

Система работы педагога состоит из следующих компонентов:

1. Диагностика исходного уровня развития математических способностей учащихся.

2. Прогнозирование положительных результатов деятельности учащихся.

3. Реализация комплекса упражнений по развитию математических способностей в учебном процессе в рамках программы « Школа 2100».

4. Создание условий для включения в деятельность каждого ученика.

5. Выполнение и составление учениками и учителем заданий олимпиадного и творческого характера.

Система работы, помогающая выявить детей, интересующихся математикой, научить их творчески мыслить и углублять полученные знания включает:

Предварительную диагностику по определению уровня математических способностей учащихся, составление долгосрочных и краткосрочных прогнозов на весь курс обучения;

Систему уроков математики;

Многообразные формы внеклассной работы;

Индивидуальную работу со способными к математике школьниками;

Самостоятельную работу самого школьника;

Участие в олимпиадах, конкурсах, турнирах.

Результативность работы.

При 100 % успеваемости стабильно высокое качество знаний по математике. Положительная динамика уровня математических способностей учащихся. Высокая учебная мотивация и мо-тивация самореализации при выполнении научно-исследовательских работ по математике. Увеличение числа участников олимпиад и конкурсов различных уровней. Более глубокое осознание и усвоение программного материала на уровне применения знаний, умений, навыков в новых условиях; повышение интереса к предмету. Повышение познавательной активности школьников в урочной и внеурочной деятельности.

Ведущая педагогическая идея опыта заключается в совершенствовании процесса обучения школьников в процессе урочной и внеклассной работы по математике для развития познавательного интереса, логического мышления, формирования творческой активности учащихся.

Перспективность опыта объясняется его практической значимостью для повышения творческой самореализации детей в учебно-познавательной деятельности, для развития и реализации их потенциальных возможностей.

Технология опыта.

Математические способности проявляются в том, с какой скоростью, как глубоко и насколько прочно люди усваивают математический материал. Эти характеристики легче всего обнаруживаются в ходе решения задач.

Технология включает сочетание групповых, индивидуальных и коллективных форм учебной деятельности учащихся в процессе решения задач и основана на использовании комплекса упражнений для развития математических способностей учащихся. Способности развиваются в деятельности. Процесс их развития может идти стихийно, но лучше, если они развиваются в организованном процессе обучения. Создаются условия, наиболее благоприятные для целенаправленного развития способностей. На первом этапе развитие способностей характеризуется в большей степени подражательностью (репродуктивностью). Постепенно появляются элементы творчества, оригинальности и чем способнее человек, тем более ярко они выражены.

Формирование и развитие компонентов математических способностей происходит уже в начальных классах. Чем же характеризуется умственная деятельность способных к математике школьников? Способные учащиеся, воспринимая математическую задачу, систематизируют данные в задаче величины, отношения между ними. Создаётся ясный целостно-расчленённый образ задачи. Иначе говоря, для способных учащихся характерно формализованное восприятие математического материала (математических объектов, отношений и действий), связанное с быстрым схватыванием в конкретной задаче их формальной структуры. Ученики со средними способностями при восприятии задачи нового типа определяют, как правило, её отдельные элементы. Некоторым учащимся очень трудно даётся осмысление связей между компонентами задачи, они с трудом схватывают совокупность многообразных зависимостей, составляющих существо задачи. Для развития способности к формализованному восприятию математического материала учащимся предлагаются упражнения [Приложение 1. Серия I]:

1) Задачи с несформулированным вопросом;

2) Задачи с неполным составом условия;

3) Задачи с избыточным составом условия;

4) Работа по классификации задач;

5) Составление задач.

Мышление способных учеников в процессе математической деятельности характеризуется быстрым и широким обобщением (каждая конкретная задача решается как типовая). У наиболее способных учащихся такое обобщение наступает сразу, путём анализа одной отдельно взятой задачи в ряду сходных. Способные ученики без затруднений переходят к решению задач в буквенной форме.

Развитие способности к обобщению достигается путём предъявления специальных упражнений [Приложение 1. Серия II.]:

1) Решение задач одного типа; 2) Решение задач разного типа;

3)Решение задач с постепенной трансфармацией из конкретного в абстрактный план; 4) Составление уравнения по условию задачи.

Мышление способных учеников характеризуется тенденцией мыслить свёрнутыми умозаключениями. У таких учеников свёртывание процесса рассуждения наблюдается после решения первой задачи и иногда после предъявления задачи сразу выдаётся результат. Время решения задачи определяляется лишь временем, потраченным на вычисления. В основе свёрнутой структуры всегда находится хорошо логически обоснованный процесс рассуждения. Средние ученики обобщают материал после многократных упражнений, поэтому и свёртывание процесса рассуждения у них наблюдается после решения нескольких однотипных задач. У малоспособных учащихся свёртывание может начинаться лишь после большого числа упражнений. Мышление способных учеников отличается большой подвижностью мыслительных процессов, многообразием аспектов в подходе к решению задач, лёгким и свободным переключением от одной умственной операции к другой, с прямого на обратный ход мысли. Для развития гибкости мышления предлагаются упражнения [Приложение 1. Серия III.]

1) Задачи, имеющие несколько способов решения.

2) Решение и составление задач, обратных данной.

3) Решение задач обратным ходом.

4) Решение задач с альтернативным условием.

5) Решение задач с неопределёнными данными.

Для способных учащихся характерно стремлением к ясности, простоте, рациональности, экономности (изяществу) решения.

Математическая память способных учащихся проявляется в запоминании типов задач, способов их решения, конкретных данных. Способные ученики отличаются хорошо развитыми пространственными представлениями. Однако при решении ряда задач они могут обходиться без опоры на наглядные образы. В каком-то смысле логичность заменяет им «образность», они не испытывают трудностей при оперировании абстрактными схемами. Выполняя учебные задания, учащиеся вместе с тем развивают свою мыслительную деятельность. Так, решая математические задачи, школьник учится анализу, синтезу, сравнению, абстрагированию и обобщению, которые являются основными мыслительными операциями. Поэтому для формирования способностей в учебной деятельности необходимо создавать определённые условия:

А) положительные мотивы учения;

Б) интерес учащихся к предмету;

В) творческая активность;

Г) положительный микроклимат в коллективе;

Д) сильные эмоции;

Е) предоставление свободы выбора действий, вариативность работы.

Учителю удобнее опираться на некоторые чисто процессуальные характеристики деятельности способных детей. Большинству детей с математическими способностями свойственны:

Повышенная склонность к умственным действиям и положительный эмоциональный отклик на любую умственную нагрузку.

Постоянная потребность в возобновлении и усложнении умственной нагрузки, что ведёт за собой постоянное повышение уровня достижений.

Стремление к самостоятельному выбору дел и планированию своей деятельности.

Повышенная работоспособность. Длительные интеллектуальные нагрузки не утомляют этого ребёнка, наоборот, он чувствует себя хорошо в ситуации наличия проблемы.

Развитие математических способностей учащихся, занимающихся по программе «Школа 2100» и учебникам «Моя математика» авторов: Т. Е. Демидовой, С. А. Козловой, А. П. Тонких проходит на каждом уроке математики и во внеурочной деятельности. Эффективное развитие способностей невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических ребусов. Учащиеся учатся решать логические задачи с истинными и ложными высказываниями, составлять алгоритмы к задачам на переливание, взвешивание, использовать таблицы и графы для решения задач.

В поисках путей более эффективного использования структуры уроков для развития мате-матических способностей особую значимость приобретает форма организации учебной деятель-ности учащихся на уроке. В своей практике мы используем фронтальную, индивидуальную и групповую работу.

При фронтальной форме работы учащиеся выполняют общую для всех деятельность, всем классом сравнивают и обобщают её результаты. В силу своих реальных возможностей ученики могут делать обобщения и выводы на разном уровне глубины. Фронтальная форма организации обучения реализовывается нами в виде проблемного, информационного и объяснительно–иллюстративного изложения и сопровождается репродуктивными и творческими заданиями. Все текстовые логические задачи, решение которых нужно найти с помощью цепочки рассуждений, предложенные в учебнике 2 класса, в первом полугодии разбираются фронтально, так как их самостоятельное решение доступно не всем детям этого возраста. Затем эти задачи предлагаются для самостоятельного решения учащимся с высоким уровнем математических способностей. В третьем классе логические задачи даются сначала для самостоятельного решения всем учащимся, а потом анализируются предложенные варианты.

Применение полученных знаний в изменённых ситуациях лучше всего организовать с ис-пользованием индивидуальной работы. Каждый ученик получает для самостоятельного выполне-ния задание, специально для него подобранное в соответствии с подготовкой и способностями. Существует два вида индивидуальных форм организации выполнения заданий: индивидуальная и индивидуализированная. Первая характеризуется тем, что деятельность ученика по выполнению общих для всего класса заданий осуществляется без контакта с другими школьниками, но в едином для всех темпе, вторая позволяет с помощью дифференцированных индивидуальных за-даний создать оптимальные условия для реализации способностей каждого ученика. В своей работе мы используем дифференциацию учебных заданий по уровню творчества, трудности, объёму. При дифференциации по уровню творчества работа организуется следующим образом: учащимся с низким уровнем математических способностей (1 группа) предлагаются репродуктивные задания (работа по образцу, выполнение тренировочных упражнений), а ученикам со средним (2 группа) и высоким уровнем (3 группа) – творческие задания.

(2 класс. Урок № 36. Задача № 7. В гонке парусных кораблей участвовало 36 яхт. Сколько яхт дошло до финиша, если 2 яхты вернулись к старту из-за поломки, а 11 – из-за шторма?

Задание для 1-й группы. Решите задачу. Подумайте, можно ли её решить другим способом.

Задание для 2-й группы. Решите задачу двумя способами. Придумайте задачу с другим сюжетом, чтобы решение при этом не изменилось.

Задание для 3-й группы. Решите задачу тремя способами. Составьте задачу обратную к данной и решите её.

Можно предложить продуктивные задания всем ученикам, но при этом детям с низким уровнем способностей даются задания с элементами творчества, в которых нужно применить знания в изменённой ситуации, а остальным – творческие задания на применение знаний в новой ситуации.

(2 класс. Урок № 45. Задача № 5. В трёх клетках 75 волнистых попугайчиков. В первой клетке 21 попугайчик, во второй – 32 попугайчика. Сколько попугайчиков в третьей клетке?

Задание для 1-й группы. Решите задачу двумя способами.

Задание для 2-й группы. Решите задачу двумя способами. Придумайте задачу с другим сюжетом, но чтобы её решение при этом не изменилось.

Задание для 3-й группы. Решите задачу тремя способами. Измените вопрос и условие задачи так, чтобы данные об общем количестве попугайчиков стали лишними.

Дифференциация учебных заданий по уровню трудности (трудность задачи представляет совокупность многих субъективных факторов, зависящих от особенностей личности, например, таких как интеллектуальные возможности, математические способности, степень новизны и т. д.) предполагает три типа задач:

1. Задачи, решение которых состоит в стереотипном воспроизведении заученных действий. Степень трудности задач связана с тем, насколько сложным является навык воспроизведения действий и насколько прочно он освоен.

2. Задачи, решение которых требует некоторой модификации заученных действий в изменившихся условиях. Степень трудности связана с количеством и разнородностью элементов, которые надо координировать наряду с описанными выше особенностями данных.

3. Задачи, решение которых требует поиска новых, ещё неизвестных способов действий. Задачи требуют творческой активности, эвристического поиска новых, неизвестных схем действий или необычной комбинации известных.

Дифференциация по объёму учебного материала предполагает, что всем учащимся даётся некоторое количество однотипных задач. При этом определяется обязательный объём, а за каждое дополнительно выполненное задание, к примеру, начисляются баллы. Могут быть предложены задания творческого характера по составлению однотипных объектов и требуется составить максимальное их количество за определённый период времени.

Кто больше составит задач с различным содержанием, решением каждой из которых будет числовое выражение: (54 + 18) : 2

В качестве дополнительных предлагаются творческие или более трудные задания, а также задания, не связанные по содержанию с основным – задания на смекалку, нестандартные задачи, упражнения игрового характера.

При самостоятельном решении задач индивидуальная работа тоже эффективна. Степень самостоятельности такой работы разная. Сначала учащиеся выполняют задания с предварительным и фронтальным разбором, подражая образцу, или по подробным инструкционным карточкам. [Приложение 2]. По мере овладения учебными умениями степень самостоятельности возрастает: ученики (особенно со средним и высоким уровнем математических способностей) работают по общим, не детализированным заданиям, без непосредственного вмешательства учителя. Для индивидуальной работы предлагаются разработанные нами листы заданий по темам, сроки выполнения которых определяются в соответствии с желаниями и возможностями ученика [Приложение 3]. Для учащихся с низким уровнем математических способностей составляется система заданий, которая содержит: образцы решений и задачи, подлежащие решению на основе изученного образца, различные алгоритмические предписания; теоретические сведения, а также всевозможные требования сравнивать, сопоставлять, классифицировать, обобщать. [Приложение 4, фрагмент урока № 1] Такая организация учебной работы даёт возможность каждому ученику в силу своих способностей углублять и закреплять полученные знания. Индивидуальная форма работы несколько ограничивает общение учащихся, стремление передавать знания другим, участие в коллективных достижениях, поэтому мы используем групповую форму организации учебной деятельности. [Приложение 4. Фрагмент урока № 2]. Задания в группе выполняются таким способом, при котором учитывается и оценивается индивидуальный вклад каждого ребёнка. Величина групп от 2 до 4 человек. Состав группы не постоянный. Он меняется от содержания и характера работы. В состав группы входят учащиеся с разным уровнем математических способностей. Часто мы на внеклассных занятиях готовим учеников с низким уровнем математических способностей к роли кон-сультантов на уроке. Выполнение этой роли является достаточным, чтобы ребёнок почувствовал себя лучшим, свою значимость. Групповая форма работы делает явными способности каждого ученика. В сочетании с другими формами обучения – фронтальной и индивидуальной - групповая форма ор-ганизации работы учащихся приносит положительные результаты.

На уроках математики и факультативных курсах широко используются компьютерные тех-нологии. Они могут быть включены в любой этап занятия – во время индивидуальной работы, при введении новых знаний, их обобщении, закреплении, для контроля ЗУНов. Например, при решении задач на получение некоторого количества жидкости из большого или бесконечного по объё-му сосуда, водоёма или источника с помощью двух пустых сосудов задавая различные объёмы сосудов, различные требуемые количества жидкости, можно получить большой набор задач разного уровня сложности для их героя «Переливашки». Объём жидкости в условном сосуде А будет соответствовать объёму слитой жидкости, объёмы Б и В – заданным объёмам по условию задачи. Действие, обозначенное одной буквой, например, Б, означает наполнение сосуда из источника.

Задача. Для разведения картофельного пюре быстрого приготовления «Зелёный великан» требуется 1 л воды. Как, имея два сосуда ёмкостью 5 и 9 литров, налить 1 литр воды из водопроводного крана?

Дети разными вариантами ищут решение задачи. Приходят к выводу, что задача решается за 4 хода.

Действие

Для развития математических способностей нами используются широкие возможности вспомогательных форм организации учебной работы. Это факультативные занятия по курсу «Нес-тандартные и занимательные задачи», домашняя самостоятельная работа, индивидуальные заня-тия по развитию математических способностей с учащимися низкого и высокого уровня их разви-тия. На факультативных занятиях часть времени отводилась обучению решению логических задач по методике А. З. Зака. Занятия проводились 1 раз в неделю, продолжительность занятия 20 минут и способствовали повышению уровня такого компонента математических способностей, как способности к правильному логическому рассуждению.

На занятиях факультативного курса «Нестандартные и занимательные задачи» проводится коллективное обсуждение решения задачи нового вида. Благодаря этому методу у детей форми-руется такое важное качество деятельности, как осознание собственных действий, самоконтроль, возможность дать отчёт о выполняемых шагах при решении задач. Основное время на занятиях занимает самостоятельное решение задач учащимися с последующей коллективной проверкой решения. На занятиях учащиеся решают нестандартные задачи, которые разделены на серии.

Для учащихся с низким уровнем развития математических способностей проводится индивидуальная работа во внеурочное время. Работа ведётся в форме диалога, карточек-инструкций. От учащихся при такой форме требуется проговаривание вслух всех способов решения, поисков правильного ответа.

Для учащихся с высоким уровнем способностей во внеурочное время проводятся консультации для удовлетворения потребностей в углубленном изучении вопросов курса математики. Занятия по своей форме организации носят характер собеседования, консультации или самостоятельного выполнения учениками заданий под руководством учителя.

Для развития математических способностей используются следующие формы внеурочной работы: олимпиады, конкурсы, интеллектуальные игры, тематические месячники по математике. Так во время тематического месячника «Юный математик», проводимого в начальной школе в ноябре 2008 года учащиеся класса участвовали в таких мероприятиях: выпуск математических газет; конкурс «Занимательные задачи»; выставка творческих работ математической тематики; встреча с доцентом кафедры СП и ППНО, защита проектов; олимпиада по математике.

Особую роль в развитии детей занимают математические олимпиады. Это состязание, которое позволяет способным учащимся почувствовать себя настоящими математиками. Именно в этот период происходят первые самостоятельные открытия ребёнка.

Проводятся внеклассные мероприятия математической тематики: «КВН 2+3», Интеллектуальная игра «Выбор наследника», Интеллектуальный марафон», «Ма-тематический светофор», «Следопыты» [Приложение 5], игра «Весёлый поезд» и другие.

Математические способности можно выявить и оценить на основе того, как ребёнок решает определённые задачи. Само решение этих задач зависит не только от способностей, но и от мотивации, от имеющихся знаний, умений и навыков. Составление прогноза результатов развития требует знания именно способностей. Результаты наблюдений позволяют сделать вывод, что перспективы развития способностей имеются у всех детей. Главное, на что должно быть обращено внимание при улучшении способностей детей, - это создание оптимальных условий для их развития.

^ Отслеживание результатов исследовательской деятельности:

С целью практического обоснования выводов, полученных в ходе теоретического изучения проблемы: каковы наиболее эффективные формы и методы, направленные на развитие математических способностей школьников в процессе решения математических задач было проведено исследование. В эксперименте приняли участие два класса: экспериментальный 2 (4) «Б», контрольный – 2 (4) «В» общеобразовательной школы № 15. Работа велась с сентября 2006 года по январь 2009 года и предусматривала 4 этапа.

Этапы экспериментальной деятельности

I – Подготовительный (сентябрь 2006 г.). Цель: определение уровня математических способнос-тей по результатам наблюдений.

II – Констатирующая серия эксперимента (октябрь 2006 г.) Цель: определение уровня сформированности математических способностей.

III – Формирующий эксперимент (ноябрь 2006 – декабрь 2008 г.) Цель: создание необходимых условий для развития математических способностей.

IV – Контрольный эксперимент (январь 2009 г.) Цель: определение эффективности форм и методов, способствующих развитию математических способностей.

На подготовительном этапе проведены наблюдения за учащимися контрольного – 2 «Б» и экспериментального 2 «В» классов. Наблюдения проводились как в процессе изучения нового материала, так и при решении задач. Для наблюдений были выделены те признаки математических способностей, которые наиболее ярко прявляются у младших школьников:

1) относительно быстрое и успешное овладение математическими знаниями, умениями и навыками;

2) способность к последовательному правильному логическому рассуждению;

3) находчивость и сообразительность при изучении математики;

4) гибкость мышления;

5) способность к оперированию числовой и знаковой символикой;

6) пониженная утомляемость при занятиях математикой;

7) способность сокращать процесс рассуждения, мыслить свернутыми структурами;

8) способность переходить с прямого на обратный ход мысли;

9) развитость образно–геометрического мышления и пространственных представлений.

В октябре учителя заполнили таблицу математических способностей школьников, в которой оценили в баллах каждое из перечисленных качеств (0-низкий уровень, 1-средний уровень, 2-высокий уровень).

На втором этапе в экспериментальном и контрольном классах проведена диагностика развития математических способностей.

Для этого использовался тест «Решение задач»:

1. Составь из данных простых задач составные. Реши одну составную задачу разными способами, подчеркни рациональный.

Корова кота Матроскина в понедельник дала 12 литров молока. Молоко разлили в трёхлитровые банки. Сколько банок получилось у кота Матроскина?

Коля купил 3 ручки по 20 рублей каждая. Сколько денег он заплатил?

Коля купил 5 карандашей по цене 20 рублей. Сколько стоят карандаши?

Корова кота Матроскина во вторник дала 15 литров молока. Это молоко разлили в трёхлитровые банки. Сколько банок получилось у кота Матроскина?

2. Прочитай задачу. Прочитай вопросы и выражения. Соедини каждый вопрос с нужным выражением.

В
а + 18
классе 18 мальчиков и а девочек.

Сколько всего учеников в классе?

На сколько мальчиков больше, чем девочек?

На сколько девочек меньше, чем мальчиков?

3. Реши задачу.

В своём письме родителям Дядя Фёдор написал, что его дом, дом почтальона Печкина и колодец находятся на одной стороне улицы. От дома Дяди Фёдора до дома почтальона Печкина 90 метров, а от колодца до дома Дяди Фёдора 20 метров. Какое расстояние от колодца до дома почтальона Печкина?

С помощью теста проверялись те же компоненты структуры математических способностей, что и при наблюдении.

Цель: установить уровень математических способностей.

Оборудование: карточка ученика (лист).

Таблица 2

Тест проверяет умения и математические способности:

Умения, необходимые для решения задачи.

Способности, проявляющиеся в математической деятельности.

Умение отличать задачу от других текстов.

^ ПРИЛОЖЕНИЕ № 1.

1) Задачи с несформулированным вопросом:

Масса ящика с апельсинами 28 кг, а масса ящика с яблоками 27 кг. В школьную столовую привезли два ящика апельсинов и один ящик с яблоками.

В одной вазе 15 цветов, а в другой на 6 цветов больше.

Рыбаки вытащили сеть с 30 рыбами. Среди них было 17 лещей, а остальные – окуни.

2) Задачи с неполным составом условия:

В коробке на 4 карандаша больше, чем в пенале. На сколько в пенале карандашей меньше, чем в коробке?

На какой вопрос ты можешь ответить, а на какой нет? Почему?

Подумай! Как дополнить условие задачи, чтобы ответить на оба вопроса?

3) Задачи с избыточным составом условия:

Задача. У кормушки было 6 серых и 5 белых голубей. Один белый голубь улетел. Сколько белых голубей стало у кормушки?

Анализ текста показывает, что одно из данных лишнее - 6 серых голубей. Для ответа на вопрос оно не нужно. После ответа на вопрос задачи учитель предлагает внести в текст задачи такие изменения, чтобы это данное понадобилось, что приводит к составной задаче. У кормушки было 6 серых и 5 белых голубей. Один голубь улетел. Сколько голубей осталось у кормушки?

Эти изменения повлекут необходимомсть выполнить два действия
(6 + 5) - 1 или (6 - 1) + 5 или (5 - 1) + 6

4) Работа по классификации задач.

Разбейте эти задачи по две так, чтобы из них можно было составить одну:

1. На уроках труда ученики сшили 7 зайчиков и 5 мишек. Сколько всего игрушек сшили ученики

Крутецкий В.А. Психология математических способностей школьников. - М., 1968. - 432с.
В книге обобщаются многолетние теоретические и экспериментальные исследования автора по проблеме математических способностей школьников. В советской психологической литературе это первый опыт монографического изложения вопросов математических способностей школьников. В ней излагаются вопросы сущности математических способностей школьников, возрастной динамики их развития а также некоторые вопросы типологии. Помимо богатого экспериментального материала, автор широко использовал материал о развитии одаренных в области математики детей, результаты анкетных опросов ряда советских ученых-математиков и учителей математики, анализ биографий выдающихся математиков.
ОГЛАВЛЕНИЕ
Предисловие.............3
РАЗДЕЛ I. Состояние проблемы и задачи исследования.... 3
Глава I. Теоретическое и практическое значение проблемы математических способностей на современном этапе развития советской науки и школы. . . . . . .
Глава II. Проблема математических способностей в зарубежной психологии............10
§ 1. Развитие исследований по психологии способностей за рубежом..............10
§ 2. Исследование математических способностей в зарубежной психологии..............25
Глава III. Проблема математических способностей в русской дореволюционной и советской психологической литературе..............571
Глава IV. Постановка проблемы и задачи исследования. . 72
§ 1. Некоторые вопросы общей теории способностей..... 721
§ 2. Основные понятия............82
§ 3. Проблема и задачи исследования........91
РАЗДЕЛ II. Методика исследования и его организация..... 96
Глава I. Общая методика и организация исследования. . 96
Глава II. Гипотеза компонентов математических способностей как основа экспериментального исследования..... 99
Глава III. Методика экспериментального исследования. . . 101
Глава IV. Система экспериментальных задач по исследованию математических способностей школьников. . . .115
Глава V. Организация экспериментального исследования. . 195
РАЗДЕЛ III. Анализ структуры математических способностей школьников..............201
Глава I. Анализ неэкспериментальных материалов о компонентах структуры математических способностей школьников.............203
Глава II. Анализ индивидуальных случаев математической одаренности детей........... 211

Глава III. Особенности получения информации о задаче (первичной ориентировки в ней) способными к математике школьниками............246
Глава IV. Особенности переработки полученной информации в процессе решения задач способными к математике школьниками............260
§ 1. Способность к обобщению математических объектов, отношений и действий...........260
§ 2. Способность к свертыванию процесса математического рассуждения и системы соответствующих действий... 291
§ 3. Гибкость мыслительных процессов.......304
§ 4. Стремление к ясности, простоте и экономности («изяществу») решения............313
§ 5. Обратимость мыслительного процесса в математическом рассуждении (способность к быстрому и свободному переключению с прямого на обратный ход мысли) . . . 316
§ 6. Гипотеза об акцепторе математического действия. . 321
Глава V. Особенности хранения математической информации (математического материала) способными к математике школьниками..........325
Глава VI. Некоторые специальные вопросы структуры математических способностей школьников......332
§ 1. Математическая направленность ума......332
§ 2. Проблема внезапного решения («озарения», инсайта) в свете анализа компонентов математических способностей..... 335
§ 3. Малая утомляемость способных школьников в процессе длительной и напряженной математической деятельности 341
Глава VII. Типовые, возрастные и половые различия в характеристиках компонентов математических способностей. 343
§ 1. Типы структур (математических складов ума) .... 343
§ 2. Возрастная динамика развития структуры математических способностей............. 362
§ 3. О половых различиях в характеристике математических способностей............. 375
Глава VIII. Математические способности и личность.... 378
Глава IX. Общие вопросы структуры математических способностей..............385
§ 1. Общая схема структуры. Взаимоотношение компонентов 385
§ 2. Специфичность математических способностей.... 388
§ 3. Некоторые соображения о природе математических способностей..............398
Литература...............401