Формула моды и медианы в статистике. Среднее или всё же медиана

4. Мода. Медиана. Генеральная и выборочная средняя

Мода на экране, медиана в треугольнике, а средние – это температура по больнице и в палате. Продолжаем наш практический курс занимательной статистики (Занятие 1) изучением центральных характеристик статистической совокупности , названия которых вы видите в заголовке. И начнём мы с его конца, поскольку о средних величинах речь зашла практически с первых же абзацев темы. Для подготовленных читателей оглавление :

  • Генеральная и выборочная средняя – вычисление по первичным данным и для сформированного дискретного вариационного ряда;
  • Мода – определение и нахождение для дискретного случая;
  • Медиана общее определение, как найти медиану;
  • Средняя, мода и медиана интервального вариационного ряда – вычисление по первичным данным и по готовому ряду. Формулы моды и медианы,
  • Квартили, децили, перцентили – коротко о главном.

ну а «чайникам» лучше ознакомиться с материалом по порядку:

Итак, пусть исследуется некоторая генеральная совокупность объёма , а именно её числовая характеристика , не важно, дискретная или непрерывная (Занятия 2, 3 ).

Генеральной средней называется среднее арифметическое всех значений этой совокупности:

Если среди чисел есть одинаковые (что характерно для дискретного ряда ) , то формулу можно записать в более компактном виде:
, где
варианта повторяется раз;
варианта – раз;
варианта – раз;

варианта – раз.

Живой пример вычисления генеральной средней встретился в Примере 2 , но чтобы не занудничать, я даже не буду напоминать его содержание.

Далее. Как мы помним, обработка всей генеральной совокупности часто затруднена либо невозможна, и поэтому из неё организуют представительную выборку объема , и на основании исследования этой выборки делают вывод обо всей совокупности.

Выборочной средней называется среднее арифметическое всех значений выборки:

и при наличии одинаковых вариант формула запишется компактнее:
– как сумма произведений вариант на соответствующие частоты .

Выборочная средняя позволяет достаточно точно оценить истинное значение , чего вполне достаточно для многих исследований. При этом, чем больше выборка, тем точнее будет эта оценка.

Практику начнём, а точнее продолжим, с дискретного вариационного ряда и знакомого условия:

Пример 8

По результатам выборочного исследования рабочих цеха были установлены их квалификационные разряды: 4, 5, 6, 4, 4, 2, 3, 5, 4, 4, 5, 2, 3, 3, 4, 5, 5, 2, 3, 6, 5, 4, 6, 4, 3.

Как решать задачу? Если нам даны первичные данные (исходные необработанные значения), то их можно тупо просуммировать и разделить результат на объём выборки:
– среднестатистический квалификационный разряд рабочих цеха.

Но во многих задачах требуется составить вариационный ряд (см. Пример 4 ) :

– или же этот ряд предложен изначально (что бывает чаще). И тогда, мы, конечно, используем «цивилизованную» формулу:

Мода . Мода дискретного вариационного ряда – это варианта с максимальной частотой. В данном случае . Моду легко отыскать по таблице, и ещё легче на полигоне частот – это абсцисса самой высокой точки:


Иногда таковых значений несколько (с одинаковой максимальной частотой), и тогда модой считают каждое из них.

Если все или почти все варианты различны (что характерно для интервального ряда ), то модальное значение определяется несколько другим способом, о котором во 2-й части урока.

Медиана . Медиана вариационного ряда* – это значение, которая делит его на две равные части (по количеству вариант).

Но теперь нам нужно найти среднюю, моду и медиану.

Решение : чтобы найти среднюю по первичным данным, лучше всего просуммировать все варианты и разделить полученный результат на объём совокупности:
ден. ед.

Эти подсчёты, кстати, займут не так много времени и при использовании оффлайн калькулятора. Но если есть Эксель, то, конечно, забиваем в любую свободную ячейку =СУММ(, выделяем мышкой все числа, закрываем скобку ) , ставим знак деления / , вводим число 30 и жмём Enter . Готово.

Что касается моды, то её оценка по исходным данным, становится непригодна. Хоть мы и видим среди чисел одинаковые, но среди них запросто может найтись пять так шесть-семь вариант с одинаковой максимальной частотой, например, частотой 2. Кроме того, цены могут быть округлёнными. Поэтому модальное значение рассчитывается по сформированному интервальному ряду (о чём чуть позже) .

Чего не скажешь о медиане: забиваем в Эксель =МЕДИАНА(, выделяем мышью все числа, закрываем скобку ) и жмём Enter : . Причём, здесь даже ничего не нужно сортировать.

Но в Примере 6 была проведена сортировка по возрастанию (вспоминаем и сортируем – ссылка выше) , и это хорошая возможность повторить формальный алгоритм отыскания медианы. Делим объём выборки пополам:

И поскольку она состоит из чётного количества вариант, то медиана равна среднему арифметическому 15-й и 16-й варианты упорядоченного (!) вариационного ряда:

ден. ед.

Ситуация вторая . Когда дан готовый интервальный ряд (типичная учебная задача).

Продолжаем анализировать тот же пример с ботинками, где по исходным данным был составлен ИВР . Для вычисления средней потребуются середины интервалов:

– чтобы воспользоваться знакомой формулой дискретного случая:

– отличный результат! Расхождение с более точным значением (), вычисленным по первичным данным, составляет всего 0,04.

По сути дела, здесь мы приблизили интервальный ряд дискретным, и это приближение оказалось весьма эффективным. Впрочем, особой выгоды тут нет, т.к. при современном программном обеспечении не составляет труда вычислить точное значение даже по очень большому массиву первичных данных. Но это при условии, что они нам известны:)

С другими центральными показателями всё занятнее.

Чтобы найти моду, нужно найти модальный интервал (с максимальной частотой) – в данной задаче это интервал с частотой 11, и воспользоваться следующей страшненькой формулой:
, где:

– нижняя граница модального интервала;
– длина модального интервала;
– частота модального интервала;
– частота предыдущего интервала;
– частота следующего интервала.

Таким образом:
ден. ед. – как видите, «модная» цена на ботинки заметно отличается от средней арифметической .

Не вдаваясь в геометрию формулы, просто приведу гистограмму относительных частот и отмечу :


откуда хорошо видно, что мода смещена относительно центра модального интервала в сторону левого интервала с бОльшей частотой. Логично.

Справочно разберу редкие случаи:

– если модальный интервал крайний, то либо ;

– если обнаружатся 2 модальных интервала, которые находятся рядом, например, и , то рассматриваем модальный интервал , при этом близлежащие интервалы (слева и справа) по возможности тоже укрупняем в 2 раза.

– если между модальными интервалами есть расстояние, то применяем формулу к каждому интервалу, получая тем самым 2 или бОльшее количество мод.

Вот такой вот депеш мод:)

И медиана. Если дан готовый интервальный ряд, то медиана рассчитывается чуть по менее страшной формуле, но сначала нудно (описка по Фрейду:)) найти медианный интервал – это интервал, содержащий варианту (либо 2 варианты), которая делит вариационный ряд на две равные части.

Выше я рассказал, как определить медиану, ориентируясь на относительные накопленные частоты , здесь же сподручнее рассчитать «обычные» накопленные частоты . Вычислительный алгоритм точно такой же – первое значение сносим слева (красная стрелка) , и каждое следующее получается как сумма предыдущего с текущей частотой из левого столбца (зелёные обозначения в качестве примера) :

Всем понятен смысл чисел в правом столбце? – это количество вариант, которые успели «накопиться» на всех «пройденных» интервалах, включая текущий.

Поскольку у нас чётное количество вариант (30 штук), то медианным будет тот интервал, который содержит 30/2 = 15-ю и 16-ю варианту. И ориентируясь по накопленным частотам, легко прийти к выводу, что эти варианты содержатся в интервале .

Формула медианы:
, где:
– объём статистической совокупности;
– нижняя граница медианного интервала;
– длина медианного интервала;
частота медианного интервала;
накопленная частота предыдущего интервала.

Таким образом:
ден. ед. – заметим, что медианное значение, наоборот, оказалось смещено правее, т.к. по правую руку находится значительное количество вариант:


И справочно особые случаи.

Cреднее арифметическое значение (далее по тексту — среднее), пожалуй, наиболее популярный статистический параметр. Этим понятием пользуются повсеместно — начиная от поговорки «средняя температура по больнице» и кончая серьезными научными трудами. Однако, как ни странно, среднее значение — коварное понятие, часто вводящее в заблуждение, вместо того чтобы придавать четкость изложению и вносить ясность.

Если говорить о научной работе, то статистический анализ данных применяется почти во всех прикладных науках, даже и в гуманитарных (например, психологии). Среднее значение вычисляется для признаков, измеряемых в так называемых непрерывных шкалах. Такими признаками являются, например, концентрации веществ в сыворотке крови, рост, вес, возраст. Среднее арифметическое можно легко вычислить, и этому учат еще в средней школе. Однако (в соответствии с положениями математической статистики) среднее значение является адекватной мерой центральной тенденции в выборке только в случае нормального (гауссова) распределения признака (рис. 1). Рис. 1. Нормальное (гауссово) распределение признака в выборке. Среднее (М) и медиана (Ме) совпадают

В случае же отклонения распределения от нормального закона среднее значение использовать некорректно, так как оно является слишком чувствительным параметром к так называемым «выбросам» — нехарактерным для изучаемой выборки, слишком большим или слишком малым значением (рис. 2). В этом случае для характеристики центральной тенденции в выборке должен применяться другой параметр — медиана. Медиана — это значение признака, справа и слева от которого находится равное число наблюдений (по 50%). Этот параметр (в отличие от среднего значения) устойчив к «выбросам». Заметим также, что медиана может использоваться и в случае нормального распределения — в этом случае медиана совпадает со средним значением.

Рис. 2. Распределение признака в выборке, отличное от нормального. Среднее (м) и медиана (МЕ) не совпадают

Для того, чтобы узнать, является ли распределение признака в выборке нормальным (гауссовым) или нет, т. е. для того, чтобы узнать, какой из параметров следует применять (среднее значение или медиану), существуют специальные статистические тесты.

Приведем пример. Скорость оседания эритроцитов в группе пациентов, недавно перенесших пневмонию, — 3, 5, 5, 7, 11, 12, 16, 16, 21, 42, 58. Среднее значение для этой выборки равно 17,8, медиана — 12. Распределение (по тесту Шапиро—Уилка) нормальным не является (рис. 3), поэтому использовать надо медиану. Рис. 3. Пример

Как ни странно, но в некоторых областях экономики сторонний наблюдатель не может заметить хоть какого-то следа корректного применения математической статистики. Так, нам постоянно говорят о средней зарплате (например, в НИИ), и эти числа обычно удивляют не только рядовых сотрудников, но и руководителей подразделений (ныне называемых «менеджерами среднего звена»). Мы удивляемся, что средняя зарплата в Москве — 40 тыс. руб., но, конечно, понимаем, что нас «усреднили» с олигархами. Вот пример из жизни научных работников: зарплаты сотрудников лаборатории (тыс. руб.) — 3, 5, 5, 7, 11, 12, 16, 16, 21, 42, 58. Среднее значение — 17,8, медиана — 12. Согласитесь, что это разные числа!

Конечно, нельзя исключить, что замалчивание свойств среднего — лукавство, так как руководству всегда выгоднее представить ситуацию с зарплатой сотрудников лучше, чем она есть на самом деле.

Не пора ли научному сообществу призвать наших руководителей прекратить некорректное использование математической статистики?

Ольга Реброва,
докт. мед. наук, вице-президент
МОО «Общество специалистов доказательной медицины»

Медиана - это такое значение признака, которое разделяет ранжированный ряд распределения на две равные части - со значениями признака меньше медианы и со значениями признака больше медианы. Для нахождения медианы, нужно отыскать значение признака, которое находится на середине упорядоченного ряда.

Посмотреть решение задачи на нахождение моды и медианы Вы можете

В ранжированных рядах несгруппированные данные для нахождения медианы сводятся к поиску порядкового номера медианы. Медиана может быть вычислена по следующей формуле:

где Хm - нижняя граница медианного интервала;
im - медианный интервал;
Sme- сумма наблюдений, которая была накоплена до начала медианного интервала;
fme - число наблюдений в медианном интервале.

Свойства медианы

  1. Медиана не зависит от тех значений признака, которые расположены по обе стороны от нее.
  2. Аналитические операции с медианой весьма ограничены, поэтому при объединении двух распределений с известными медианами невозможно заранее предсказать величину медианы нового распределения.
  3. Медиана обладает свойством минимальности. Его суть заключается в том, что сумма абсолютных отклонений значений х, от медианы представляет собой минимальную величину по сравнению с отклонением X от любой другой величины

Графическое определение медианы

Для определения медианы графическим методом используют накопленные частоты, по которым строится кумулятивная кривая. Вершины ординат, соответствующих накопленным частотам, соединяют отрезками прямой. Разделив поп олам последнюю ординату, которая соответствует общей сумме частот и проведя к ней перпендикуляр пересечения с кумулятивной кривой, находят ординату искомого значения медианы.

Определение моды в статистике

Мода - значение признака , имеющее наибольшую частоту в статистическом ряду распределения.

Определение моды производится разными способами, и это зависит от того, представлен ли варьирующий признак в виде дискретного или интервального ряда.

Нахождение моды и медианы происходит путем обычного просматривания столбца частот. В этом столбце находят наибольшее число, характеризующее наибольшую частоту. Ей соответствует определенное значение признака, которое и является модой. В интервальном вариационном ряду модой приблизительно считают центральный вариант интервала с наибольшей частотой. В таком ряду распределения мода вычисляется по формуле :

где ХМо - нижняя граница модального интервала;
imo - модальный интервал;
fм0, fм0-1, fм0+1 — частоты в модальном, предыдущем и следующем за модальным интервалах.

Модальный интервал определяется по наибольшей частоте.

Мода широко используется в статистической практике при анализе покупательного спроса, регистрации цен и т. д.

Соотношения между средней арифметической, медианой и модой

Для одномодального симметричного ряда распределения , медиана и мода совпадают. Для асимметричных распределений они не совпадают.

К. Пирсон на основе выравнивания различных типов кривых определил, что для умеренно асимметричных распределений справедливы такие приближенные соотношения между средней арифметической, медианой и модой:

Медианой Ме называют такое значение признака, которое приходится на середину ранжированного ряда и делит его на две равные по числу единиц части. Таким образом, в ранжированном ряду распределения одна половина ряда имеет значения признака, превышающие медиану, другая – меньше медианы.

Медиану используют вместо средней арифметической, когда крайние варианты ранжированного ряда (наименьшая и наибольшая) по сравнению с остальными оказываются чрезмерно большими или чрезмерно малыми.

В дискретном вариационном ряду, содержащем нечетное число единиц, медиана равна варианте признака, имеющей номер :
,
где N – число единиц совокупности.
В дискретном ряду, состоящем из четного числа единиц совокупности, медиана определяется как средняя из вариант, имеющих номера и :
.
В распределении рабочих по стажу работы медиана равна средней из вариант, имеющих в ранжированном ряду номера 10: 2 = 5 и 10: 2 + 1 = 6. Варианты пятого и шестого признака равны 4 годам, таким образом
года
При вычислении медианы в интервальном ряду сначала находят медианный интервал , (т. е. содержащий медиану), для чего используют накопленные частоты или частости. Медианным является интервал, накопленная частота которого равна или превышает половину всего объема совокупности. Затем значение медианы рассчитывается по формуле:
,
где – нижняя граница медианного интервала;
– ширина медианного интервала;
– накопленная частота интервала, предшествующего медианному;
– частота медианного интервала.
Рассчитаем медиану ряда распределения рабочих по размеру зарплаты (см. лекцию «Сводка и группировка статистических данных»).
Медианным является интервал заработной платы 800-900 грн., поскольку его кумулятивная частота равна 17, что превышает половину суммы всех частот (). Тогда
Ме=800+100грн.
Полученное значение говорит о том, половина рабочих имеют заработную плату ниже 875 грн., но это выше среднего ее размера.
Для определения медианы можно вместо кумулятивных частот использовать кумулятивные частости .
Медиана, как и мода, не зависит от крайних значений вариант, поэтому также применяется для характеристики центра в рядах распределения с неопределенными границами.
Свойство медианы :сумма абсолютных величин отклонений вариант от медианы меньше, чем от любой другой величины (в том числе и от средней арифметической):

Это свойство медианы используется на транспорте при проектировании расположения трамвайных и троллейбусных остановок, бензоколонок, сборочных пунктов и т..д.
Пример. На шоссе длиной 100 км расположено 10 гаражей. Для проектирования строительства бензоколонки были собраны данные о числе предполагаемых ездок на заправку по каждому гаражу.
Таблица 2 – Данные о количестве ездок на заправку по каждому гаражу.

Нужно поставить бензоколонку так, чтобы общий пробег автомашин на заправку был наименьшим.
Вариант 1. Если бензоколонку поставить в середине шоссе, т. е. на 50-ом километре (центр диапазона изменения признака), то пробеги с учетом числа ездок составят:
а) в одном направлении:
;
б) в противоположном:
;
в) общий пробег в оба направления: .

Вариант 2. Если бензоколонку поставить на среднем участке шоссе, определенном по формуле средней арифметической с учетом числа ездок:

Медиану можно определить графически, по кумуляте (см. лекцию «Сводка и группировка статистических данных»). Для этого последнюю ординату, равную сумме всех частот или частостей, делят пополам. Из полученной точки восстанавливают перпендикуляр до пересечения с кумулятой. Абсцисса точки пересечения и дает значение медианы.

Центральную тенденцию данных можно рассматривать не только, как значение с нулевым суммарным отклонением (средняя арифметическая) или максимальную частоту (мода), но и как некоторую отметку (определенный уровень анализируемого показателя), делящую ранжированные данные (отсортированные по возрастанию или убыванию) на две равные части. То есть половина исходных данных по своему значению меньше этой отметки, а половина – больше. Это и есть медиана . Мода и медиана — важные показатели, они отражают структуру данных и иногда используются вместо средней арифметической.

Итак, медианна – это уровень показателя, который делит некоторый набор данных на две равные половины. В качестве демонстрационного примера вновь обратимся к набору случайных чисел. Такое распределение при большом количестве значений в литературе описывается, как обыденное явление. Вот данные в виде рисунка.

Очевидно, что при симметричном распределении середина, делящая совокупность пополам, будет находиться в самом центре – там же, где средняя арифметическая (и мода). Это, так сказать, идеальная ситуация, когда мода, медиана и средняя арифметическая совпадают и все их свойства приходятся на одну точку – максимальная частота, деление пополам, нулевая сумма отклонений – все в одном месте. Однако, жизнь не так симметрична, как нормальное распределение. Поэтому посмотрим на ассиметричное распределение, и что там происходит с центральными нашими тенденциями.

Допустим, мы имеем дело с техническими замерами отклонений от ожидаемой величины чего-нибудь (содержания элементов, расстояния, уровня, массы и т.д. и т.п.). Если все ОК, то отклонения, скорее всего, будут распределены по закону, близкому к нормальному, примерно, как на рисунке выше (практика подобное предположение опровергает, ну да ладно). Но если в анализируемом процессе присутствует какой-то существенный и неконтролируемый фактор, то в наблюдениях могут появиться аномальные значения, которые в значительной мере повлияют на среднюю арифметическую, но при этом почти не затронут медиану, что отчетливо видно на следующей гистограмме.

Медиана – это основная альтернатива средней арифметической, т.к. она устойчива к аномальным отклонениям (выбросам). В этой статье рассказывается о том, как ведет себя средняя арифметическая при аномальных значениях и как с этим бороться, то есть как сделать ее менее зависимой от выбросов. Основные варианты – это увеличение числа наблюдений и/или устранение аномалий из аналитической выборки. Так вот, переход от средней арифметической к медиане – еще один способ получить устойчивую (робастную) оценку математичечского ожидания. Другое дело, что свойства средней арифметической будут навсегда потеряны, но тут надо смотреть, что важней.

Теперь примеры реального использования медианы в статистике. При анализе средней заплаты по стране вместо средней арифметической могут задействовать медиану. Народу не нравится, когда их собственная з/п оказывается ниже средней (арифметической) по стране. Это вызывает бурю эмоций и разоблачений в неправильных подсчетах. Мол, у меня зарплата 100 рублей, а у директора 1000 рублей, вот и получается в среднем по 550 рублей. Что такое , недовольным гражданам неведомо и не интересно. А вот если использовать медиану, то будет понятно, что половина населения получает доход меньше медианного значения, а половина – больше.

Этот показатель также применяется в демографической статистике, при анализе различных количественных и качественных характеристик (прочность материала, содержание элементов, время работы, количество отказов и проч.). Даже трейдеры на forex используют медиану, как некоторый секретный сигнал к началу действий. Хотя большинство из них это не спасает.

Математическим свойством медианы является то, что сумма абсолютных (по модулю) отклонений от медианного значения дает минимально возможное значение, если сравнивать с отклонениями от любой другой величины. Даже меньше, чем от средней арифметической, о как! Данный факт находит свое применение, например, при решении транспортных задач, когда нужно рассчитать место строительства объекта около дороги таким образом, чтобы суммарная длина рейсов до него из разных мест была минимальной (остановки, заправки, склады и т.д. и т.п.). Логистам и на заметку.

{module 111}

Формула медианы для дискретных данных чем-то напоминает формулу моды. А именно тем, что формулы как таковой нет. Медианное значение выбирают из имеющихся данных и только, если это невозможно, проводят несложный расчет.

Первым делом данные ранжируют (сортируют по убыванию). Далее есть два варианта. Если количество значений нечетно, то медианна будет соответствовать центральному значению ряда, номер которого можно определить по формуле:

№ Me – номер значения, соответствующего медиане,

N – количество значений в совокупности данных.

Тогда медиана будет обозначаться, как

Это первый вариант, когда в данных есть одно центральное значение. Второй вариант наступает тогда, когда количество данных четно, то есть вместо одного есть два центральных значения. Выход прост: берется средняя арифметическая из двух центральных значений:

Так происходит поиск или расчет в дискретных данных. Однако данные могут быть еще и интервальными , где выбрать конкретное значение не представляется возможным, так как конкретных значений просто нет. Как и в моде, медиану в таком случае рассчитывают по некоторому общепринятому правилу, исходя из определенного предположения, то есть на глазок. И нормально получается, я вам скажу!

Для начала (после ранжирования данных) находят медианный интервал . Это такой интервал, через который проходит искомое медианное значение. Определяется с помощью накопленной доли ранжированных интервалов. Где накопленная доля впервые перевалила через 50% всех значений, там и медианный интервал.

Не знаю, кто придумал формулу медианы, но исходили явно из того предположения, что распределение данных внутри медианного интервала равномерное (т.е. 30% ширины интервала – это 30% значений, 80% ширины – 80% значений и т.д.). Отсюда, зная количество значений от начала медианного интервала до 50% всех значений совокупности (разница между половиной количества всех значений и накопленной частотой предмедианного интервала), можно найти, какую долю они занимают во всем медианном интервале. Вот эта доля аккурат переносится на ширину медианного интервала, указывая на конкретное значение, именуемое впоследствии медианой.

Не мудрствуя лукаво, лучше обратимся к наглядной схеме – понятней будет.

Немного громоздко получилось, но теперь, надеюсь, все наглядно и понятно. Чтобы при расчете каждый раз не рисовать такой график, можно воспользоваться готовой формулой. Формула медианы имеет следующий вид:

где x Me - нижняя граница медианного интервала;

i Me - ширина медианного интервала;

∑f/2 - количество всех значений, деленное на 2 (два);

S (Me-1) - суммарное количество наблюдений, которое было накоплено до начала медианного интервала, т.е. накопленная частота предмедианного интервала;

f Me - число наблюдений в медианном интервале.

Как нетрудно заметить, формула медианы состоит из двух слагаемых: 1 – значение начала медианного интервала и 2 – та самая часть, которая пропорциональна недостающей накопленной доли до 50%. Чем-то даже похоже на формулу моды. Отличие заключается в поиске точки внутри интервала.

Для примера рассчитаем медиану по следующим данным.

Требуется найти медианную цену, то есть ту цену, дешевле и дороже которой по половине количества товаров. Для начала произведем вспомогательные расчеты накопленной частоты, накопленной доли, общего количества товаров. Теперь еще раз посмотрим, что у нас имеется.

По последней колонке «Накопленная доля» определяем медианный интервал – 300-400 руб (накопленная доля впервые более 50%). Ширина интервала – 100 руб. Теперь остается подставить данные в приведенную выше формулу и рассчитать медиану.

То есть у одной половины товаров цена ниже, чем 350 руб., у другой половины – выше. Все просто. Средняя арифметическая, рассчитанная по этим же данным, равна 355 руб. Отличие не значительное, но оно есть.

Расчет медианы в Excel

Статистика без автоматических расчетов – прошлый век. Медиану чисел легко найти, используя функцию Excel, которая так и называется — МЕДИАНА. Используется архипросто. Активируется ячейка для расчета, вызывается функция, выбирается диапазон данных и «ОК». Больше и обсуждать нечего. Годится и для четного, и для нечетного количества данных.

Другое дело интервальные данные. Соответствующей функции в Excel нет. Поэтому нужно задействовать приведенную выше формулу. Что поделаешь? Но это не очень трагично, так как расчет медианы по интервальным данным – редкий случай. Можно и на калькуляторе разок посчитать.

Кстати, тот факт, что медиана делит данные на две равные части, напоминает о некоторых методах группировки. Действительно, после нахождения медианы, мы также получаем две группы с равным количеством значений. Развивая эту идею, деление на группы можно производить не только по принципу 50/50, но и по другим долям. Например, 20% наибольших значений есть не что иное, как группа А в ABC-анализе . О других долях как-нибудь в другой статье. Видите, как пересекаются, казалось бы, не связанные методы?

Подходит к концу мой рассказ о статистическом показателе медиана. Надеюсь, он был неутомительным. Напоследок предлагаю задачку в стиле телевикторины «Кто хочет стать миллионером?». Имеется набор данных. 15, 5, 20, 5, 10. Каково среднее значение? Четыре варианта:

Предлагаю также посмотреть видеролик на тему расчета медианы в Excel.