Осциллятор тесла разрушивший дом схемы. Электрические осцилляторы. Все из ничего

Никола Тесла – один из известнейших ученых в области электроэнергетики и электричества, чье научное наследие до сих пор вызывает многочисленные споры. И если практически реализованные проекты активно используются и известны повсеместно, то некоторые нереализованные до сих пор являются объектами исследований, как серьезными организациями, так и любителями.

Генератор или вечный двигатель?

Большинство ученых отрицает возможность создания генератора на свободной энергии. На это следует возразить тем, что даже в прошлом многие современные достижения также казались невозможными. Дело в том, что наука имеет множество областей, где исследования проведены далеко не полностью. Это особенно касается вопросов физических полей и энергии. Те виды энергии, которые нам знакомы, можно ощутить и измерять. Но ведь нельзя отрицать наличие неизвестных видов только на том основании, что пока не существует методов и приборов для их измерения и преобразования.

Для скептиков любые предложения генераторов, схемы и идеи, основанные на преобразовании свободной энергии, кажутся вечными двигателями, которые работают, не потребляя энергии, да еще способны вырабатывать излишек уже в виде известной энергии, тепловой или электрической.

Здесь не идет речь о вечных двигателях. На самом деле вечный генератор использует свободную энергию, которая в настоящее время пока еще не имеет внятного теоретического обоснования. Чем раньше считался свет? А сейчас он используется для выработки электрической энергии.

Альтернативная энергетика

Сторонники традиционной физики и энергетики отрицают возможность создания работоспособного генератора, оперируя существующими понятиями, законами и определениями. Приводится масса доказательств, что подобные устройства не могут существовать на практике, поскольку противоречат закону сохранения энергии.

Сторонники «теории заговора» убеждены, что расчеты генератора существуют, как и его работающие прототипы, но они не предъявляются науке и широкой общественности, поскольку не выгодны современным энергетическим компаниям и могут вызвать кризис экономики.

Энтузиасты неоднократно делали попытки создания генератора, ими построены немало прототипов, но отчеты о работе почему-то регулярно пропадают или исчезают. Отмечено, что периодически закрываются сетевые ресурсы, посвященные альтернативной энергетике.

Это может свидетельствовать о том, что конструкция в действительности работоспособна, и создать генератор своими руками возможно даже в домашних условиях.

Многие путают понятия генератора и трансформатора (катушка) Тесла. Для разъяснений нужно остановиться на этом подробнее. Трансформатор Тесла изучен достаточно и доступен для повторения. Многие производители успешно выпускают различные модели трансформаторов как для практического использования в различных устройствах, так и для демонстрационных целей.

Трансформатор Тесла представляет собой преобразователь электрической энергии с низкого напряжения в высокое. Выходное напряжение может составлять миллионы вольт, но сама конструкция при этом не представляет высокой сложности. Гениальность изобретателя состоит в том, что ему удалось собрать устройство, использующее известные физические свойства электромагнитных полей, но при этом совершенно иным способом. Исчерпывающего теоретического обоснования работы устройства не существует до сих пор.

В основе конструкции лежит трансформатор с двумя обмотками, с большим и малым количеством витков. Самое главное – отсутствует традиционный ферромагнитный сердечник, и взаимосвязь между обмотками получается очень слабой. Учитывая уровень выходного напряжения трансформатора Тесла, можно сделать вывод, что обычная методика расчета трансформатора, даже с учетом высокой частоты преобразования, здесь неприменима.

Генератор Тесла

Иное предназначение имеет генератор. Конструкция генератора также использует трансформатор, подобный высоковольтному. Работая на одинаковом принципе с трансформатором, генератор способен создавать на выходе излишки энергии, значительно превосходящие затраченные на первоначальный запуск устройства. Основная задача состоит в методике изготовления трансформатора и его настройке. Важна точная настройка системы на частоту резонанса. Ситуация осложняется тем, что таких данных не имеется в свободном доступе.

Как сделать генератор

Чтобы собрать генератор Тесла, необходимо совсем немного. В интернете можно найти данные по сборке трансформатора генератора Тесла своими руками и схемы для запуска конструкции. На основе имеющейся информации ниже даны рекомендации, как должна быть выполнена самостоятельная сборка конструкции, и краткая методика настройки.

Трансформатор должен удовлетворять противоречивым требованиям:

  • Высокочастотная свободная энергия требует уменьшения габаритов (подобно разнице в размерах телевизионных антенн метрового и дециметровых диапазонов);
  • С уменьшением габаритов падает КПД конструкции.

Трансформатор

Вопрос частично решается подбором диаметра и количества первичной обмотки трансформатора. Оптимальный диаметр обмотки составляет 50 мм, поэтому удобно для намотки использовать отрезок пластиковой канализационной трубы соответствующей длины. Экспериментально установлено, что количество витков обмотки должно составлять не менее 800, лучше это количество удвоить. Диметр провода не имеет существенного значения для самодельной конструкции, поскольку ее мощность невелика. Поэтому диаметр может лежать в диапазоне от 0.12 до 0.5 мм. Меньшее значение создаст трудности при намотке, а большее – увеличит габариты устройства.

Длина трубы берется с учетом количества витков и диаметра провода. К примеру, провода ПЭВ-2 0.15 мм диаметр с изоляцией составляет 0.17 мм, суммарная длина обмотки – 272 мм. Отступив от края трубы 50 мм для крепления, сверлят отверстие для крепления начала обмотки, а через 272 мм еще одно – для конца. Запас трубы сверху составляет пару сантиметров. Итого общая длина отрезка трубы будет 340-350 мм.

Для намотки провода его начало продевают в нижнее отверстие, оставляют там запас в 10-20 см и закрепляют скотчем. После того, как обмотка выполнена, ее конец такой же длины продевают в верхнее отверстие и тоже закрепляют.

Важно! Витки обмотки должны плотно прилегать друг к другу. Провод не должен иметь перегибов и петель.

Готовую обмотку обязательно покрывают сверху электротехническим лаком или эпоксидной смолой для исключения сдвига витков.

Для вторичной обмотки нужен более серьезный провод с сечением не менее 10 мм2. Это соответствует проводу с диаметром 3.6 мм. Если есть толще, то так даже лучше.

Обратите внимание! Поскольку система работает на высокой частоте, то, благодаря скин-эффекту, ток распространяется в поверхностном слое провода, поэтому вместо него можно взять тонкостенную медную трубку. Скин-эффект – еще одно оправдание большого диаметра провода вторичной обмотки.

Диаметр витков вторичной обмотки должен быть в два раза больше первичной, то есть 100 мм. Вторичку можно намотать на отрезке канализационной трубы 110 мм или на любом другом простом каркасе. Труба или подходящая болванка нужны только для процесса намотки. Жесткая обмотка в каркасе нуждаться не будет.

Для вторичной обмотки количество витков составляет 5-6. Есть несколько вариантов конструкции вторичной обмотки:

  • Сплошная;
  • С расстоянием между витками 20-30 мм;
  • Конусообразная с теми же расстояниями.

Конусообразная представляет наибольший интерес, поскольку расширяет диапазон настройки (имеет более широкую частотную полосу). Нижний первый виток делается диаметром 100 мм, а верхний доходит до 150-200 мм.

Важно! Необходимо строго выдерживать расстояние между витками, а поверхность провода или трубки нужно сделать гладкими (в лучшем случае отполировать).

Схема запитки

Для первоначального запуска необходима схема, которая подает на трансформатор генератора Тесла импульс энергии. Далее генератор переходит в автоколебательный режим и постоянно во внешнем питании не нуждается.

На сленге разработчиков устройство для запитки именуется «качер». Те, кто знаком с электроникой, знают, что правильное название устройства – блокинг-генератор (ударный генератор). Подобное схемотехническое решение вырабатывает однократный мощный электрический импульс.

Разработано много вариантов блокинг-генераторов, которые делятся на три группы:

  • На электронных лампах;
  • На биполярных транзисторах;
  • На полевых транзисторах с изолированным затвором.

Ламповый электромагнитный генератор на мощных генераторных лампах работает с высокими выходными параметрами, но его конструирование затрудняется наличием комплектующих. Кроме того, требуется не двух,- а трехобмоточный трансформатор, поэтому ламповые блокинг-генераторы в настоящее время встречаются редко.

Самое широкое распространение получили качеры на биполярных транзисторах. Их схемотехника хорошо отработана, настройка и регулировка просты. Используются транзисторы отечественного производства 800-й серии (КТ805, КТ808, КТ819), которые имеют хорошие технические параметры, широко распространены и не вызывают финансовых затруднений.

Распространение мощных и надежных полевых транзисторов сделало возможным конструирование блокинг-генераторов с повышенным КПД благодаря тому, что MOSFET или IGBT транзисторы имеют лучшие параметры по падению напряжения на переходах. Кроме роста КПД, становится менее проблематичной проблема охлаждения транзисторов. Проверенные схемы используют транзисторы IRF740 или IRF840, также недорогие и надежные.

Перед тем, как собрать генератор в готовую конструкцию, еще раз перепроверьте качество изготовления всех комплектующих. Соберите конструкцию и подайте на нее питание. Переход в автоколебательный режим сопровождается наличием напряжения на обмотках трансформатора (на выходе вторички). Если напряжение отсутствует, то необходима настройка частоты блокинг-генератора в резонанс с частотой трансформатора.

Важно! При работе с генератором Тесла необходимо соблюдать повышенную осторожность, поскольку при запуске в первичной обмотке наводится высокое напряжение, способное привести к несчастному случаю.

Применение генератора

Генератор Тесла и трансформатор конструировались изобретателем как универсальные устройства для беспроводной передачи электрической энергии. Никола Тесла неоднократно проводил эксперименты, подтверждающие его теорию, но, к сожалению, следы отчетов по передаче энергии также оказались утеряны или надежно спрятаны, как и многие другие его конструкции. Разработчики только недавно начали конструировать устройства для передачи энергии, но и то на сравнительно малые расстояния (беспроводные зарядные устройства для телефонов – хороший пример).

В эпоху неотвратимого истощения запасов невосполняемых природных ресурсов (углеводородного топлива) разработка и конструирование устройств альтернативной энергетики, в том числе бестопливного генератора, имеет высокое значение. Электрогенератором на свободной энергии при его достаточной мощности можно пользоваться для освещения и отопления домов. Не следует отказываться от исследований, ссылаясь на отсутствие опыта и профильного образования. Многие важные изобретения сделаны людьми, которые были профессионалами в совершенно других областях.

Видео

Идея получения «бестопливного» электричества в домашних условиях чрезвычайно интересна. Любое упоминание о действующей технологии мгновенно приковывает внимание людей, желающих безвозмездно получить в свое распоряжение упоительные возможности энергетической независимости. Чтобы сделать правильные выводы по данной тематике, необходимо изучить теорию и практику.

Генератор собрать можно без больших затруднений, в любом гараже

Как создать вечный генератор

Первое, что приходит на ум при упоминании подобных устройств, это изобретения Тесла. Этого человека нельзя назвать фантазером. Наоборот, он известен своими проектами, которые были успешно реализованы на практике:

  • Он создал первые трансформаторы и генераторы, работающие на токах высокой частоты. Фактически он основал соответствующее направление электротехнического ВЧ оборудования. Некоторые результаты его экспериментов используются до сих пор в правилах безопасности.
  • Тесла создал теорию, на базе которой появились конструкции электрических машин многофазного типа. Многие современные электродвигатели созданы на основе его разработок.
  • Многие исследователи справедливо полагают, что передачу информации на расстояние с помощью радиоволн также изобрел Тесла.
  • Его идеи были реализованы в патентах знаменитого Эдисона, как утверждают историки.
  • Гигантские башни, генераторы энергии, которые были построены Тесла, использовались для множества экспериментов, фантастических даже по современным меркам. Они создавали полярное сияние на широте Нью-Йорка и вызывали вибрации, сопоставимые по силе с мощными природными землетрясениями.
  • Тунгусский метеорит, говорят, был в действительности результатом эксперимента изобретателя.
  • Небольшая черная коробочка, которую Тесла установил в серийный автомобиль с электромотором, обеспечивала полноценное многочасовое питание техники без аккумуляторов и проводов.

Опыты в районе Тунгуски

Здесь перечислена только часть изобретений. Но даже краткие описания некоторых из них позволяют предположить, что Тесла своими руками создал «вечный» двигатель. Впрочем, сам изобретатель использовал для расчетов не заклинания и чудеса, но вполне материалистичные формулы. Следует отметить, однако, что они описывали теорию эфира, которая не признается современной наукой.

Для проверки на практике можно использовать типовые схемы приборов.

Если с помощью осциллографа сделать измерения колебаний, которые образует «классическая» катушка Тесла, будут сделаны интересные выводы.

Осциллограммы напряжений при разных видах индуктивной связи

Сильная связь индуктивного типа обеспечена стандартным способом. Для этого в каркас устанавливается сердечник из трансформаторного железа, или другого подходящего материала. В правой части рисунка приведены соответствующие колебания, результаты измерений на первичной и вторичной катушке. Явно видна корреляция процессов.

Теперь нужно обратить внимание на левую часть рисунка. После подачи на первичную обмотку кратковременного импульса колебания постепенно затухают. Однако на второй катушке зарегистрирован иной процесс. Колебания здесь имеют явно выраженную инерционную природу. Они не затухают еще некоторое время без внешней подпитки энергией. Тесла полагал, что данный эффект объясняет наличие эфира, среды с уникальными свойствами.

В качестве прямых доказательств этой теории приводят следующие ситуации:

  • Самостоятельный заряд конденсаторов, не подсоединенных к источнику энергии.
  • Существенное изменение нормальных параметров электростанций, которое вызывает реактивная мощность.
  • Появление коронных разрядов на неподключенной к сети катушке, при размещении ее на большом расстоянии от работающего аналогичного устройства.

Последний из процессов происходит без дополнительных затрат энергии, поэтому следует рассмотреть его более внимательно. Ниже приведена принципиальная схема катушек Тесла, которую можно собрать без больших затруднений своими руками дома.

Принципиальная схема катушек Тесла

В следующем перечне приведены основные параметры изделий и особенности, которые надо учитывать в процессе монтажа:

  • Для крупной конструкции первичной обмотки понадобится трубка из меди, диаметром около 8 мм. Эта катушка состоит из 7-9 витков, укладывающихся с расширением по спирали в верхнюю сторону.
  • Вторичную обмотку можно сделать на каркасе из полимерной трубы (диаметр от 90 до 110 мм). Хорошо подходит фторопласт. Этот материал обладает отличными изоляционными характеристиками, сохраняет целостность структуры изделия в широком диапазоне температур. Проводник подбирают такой, чтобы сделать 900-1100 витков.
  • Внутри трубы помещают третью обмотку. Чтобы собрать ее правильно, используют многожильный провод в толстой оболочке. Площадь сечения проводника должна быть 15-20 мм 2 . От количества ее витков будет зависеть величина напряжения на выходе.
  • Для точной настройки резонанса все обмотки настраиваются на одну частоту с применением конденсаторов.

Практическая реализация проектов

Приведенный в предыдущем пункте пример описывает только часть устройства. Там нет точного указания электрических величин, формул.

Своими руками сделать подобную конструкцию можно. Но придется искать схемы возбуждающего генератора, совершать многочисленные эксперименты по взаимному расположению блоков в пространстве, подбирать частоты и резонансы.

Говорят, что кому-то удача улыбнулась. Но в открытом доступе найти полные данные, или заслуживающие доверия доказательства невозможно. Поэтому далее будут рассмотрены только реальные изделия, которые действительно можно сделать дома самому.

На следующем рисунке изображена принципиальная электрическая схема. Она собирается из недорогих стандартных деталей, которые можно приобрести в любом специализированном магазине. Их номиналы и обозначения указаны на чертеже. Затруднения могут возникнуть при поиске лампы, которая не выпускается в настоящее время серийно. Для замены можно использовать 6П369С. Но надо понимать, что этот вакуумный прибор рассчитан на меньшую мощность. Так как элементов немного, допустимо использование простейшего навесного монтажа, без изготовления специальной платы.

Электрическая схема генератора

Обозначенный на рисунке трансформатор – это катушка Тесла. Ее наматывают на трубке из диэлектрика, руководствуясь данными из следующей таблицы.

Количество витков в зависимости от обмотки и диаметра проводника

Свободные провода высоковольтной катушки устанавливают вертикально.

Чтобы обеспечить эстетичность конструкции, можно сделать своими руками специальный корпус. Он же пригодится для надежной фиксации блока на ровной поверхности и последующих экспериментов.

Один из вариантов конструкции генератора

После включения аппарата в сеть, если все сделано правильно, а элементы исправны, можно будет любоваться коронарным свечением.

Приведенную в предыдущем разделе схему из трех катушек, можно использовать совместно с этим устройством для опытов с целью создания личного источника бесплатной электроэнергии.

Коронарное излучение над катушкой

Если предпочтительна работа с новыми комплектующими деталями, стоит рассмотреть следующую схему:

Схема генератора на полевом транзисторе

Основные параметры элементов приведены на чертеже. Пояснения к сборке и важные дополнения указаны в следующей таблице.

Пояснения и дополнения к сборке генератора на полевом транзисторе

Деталь Основные параметры Примечания
Полевой транзистор Можно использовать не только тот, который отмечен на схеме, но и другой аналог, работающий с токами от 2,5-3 А и напряжением более 450 V. Перед монтажными операциями необходимо проверить функциональное состояние транзистора и других деталей.
Дроссели L3, L4, L5 Допустимо применение стандартных деталей из блока строчной развертки телевизора. Рекомендуемая мощность – 38 Вт
Диод VD 1 Возможно использование аналога. Номинальный ток прибора от 5 до 10 А
Катушка Тесла (Первичная обмотка) Создается из 5-6 витков толстого провода. Его прочность позволяет не использовать дополнительный каркас. Толщина проводника из меди – от 2 до 3 мм.
Катушка Тесла (Вторичная обмотка) Состоит из 900-1100 витков на трубчатой основе из диэлектрического материала с диаметром от 25 до 35 мм. Эта обмотка высоковольтная, поэтому пригодится ее дополнительная пропитка лаком, или создание защитного слоя фторопластовой пленкой. Для создания обмотки используют медный провод 0,3 мм в диаметре.

Скептики, отрицающие саму возможность использования «дармовой» энергии, а также те люди, которые не имеют элементарных навыков для работы с электротехникой, могут сделать своими руками следующую установку:

Безграничный источник бесплатной энергии

Пусть читателя не смущает отсутствие множества деталей, формул и объяснений. Все гениальное – просто, не правда ли? Здесь изображена принципиальная схема одного изобретения Тесла, которое до наших дней дошло без искажений, исправлений. Эта установка вырабатывает ток из солнечного света без специальных батарей и преобразователей.

Дело в том, что в потоке излучения ближайшей к Земле звезды есть частицы с положительными зарядами. При ударах о поверхность металлической пластины происходит процесс накопления заряда в электролитическом конденсаторе, который «минусом» подключен к стандартному заземлителю. Для увеличения эффективности приемник энергии устанавливают как можно выше. Подойдет алюминиевая фольга для запекания еды в духовке. Своими руками с использованием подручных средств можно сделать основу для ее закрепления и поднять устройство на большую высоту.

Но не стоит спешить в магазин. Производительность такой системы минимальна (ниже таблица с информацией по устройству).

Точные данные эксперимента

В солнечный день после 10 часов измерительный прибор показал 8 вольт на клеммах конденсатора. За несколько секунд в таком режиме разряд полностью был израсходован.

Очевидные выводы и важные дополнения

Несмотря на то что простое решение пока не предъявлено общественности, нельзя утверждать, что электромагнитный генератор великого изобретателя Тесла не существует. Теорию эфира не признает современная наука. Нынешние системы экономики, производства, политики будут уничтожены бесплатными или очень дешевыми источниками энергии. Разумеется, есть много противников их появления.

", или попросу осциллятор колебаний Теслы.
Суть устройства - создать колебания, происходящие с настраиваемой частотой, которую можно настраивать на собственную частоту обьекта, например, конструкции здания.

Колебательный резонатор Теслы

Легенда о резонаторе Тесла

Суть легенды сводится к тому, что во врмя своих экспериментов в Нью-Йоркской лаборатории, Тела вызывал резонанс в металической балке. Небольшая балка быстро теряла энергию, и Тесла решил прикрепить прибор на балку здания собственной лаборатории. Первоначально никакой реакции не происходило, но вскоре колебания вошли в резонанс с собственной частотой здания. Колебания стали нарастать так быстро, что здание начало разрушаться. Тесле не оставалось ничего, кроме как разрушить осцилятор.

Отметим, что в 1908 году в Нью-Йорке действительно было зафиксировано землетрясение, но природа его считается естественной.

Предыстория

Исследования Теслы относительно резонанса начались еще во время работы на Эдисона. Никола Тесла исследовал как акустический, электрический, магнитный, так и механический резонанс. Первый электромагнитный резонатор был представлен Теслой на Всемирной выставке 1893 года под названием "Яйцо Колумбуса". Более того, Тесла дал лекцию о электромеханическом резонаторе, и даже представил чертежи своего устройства, которые вы найдете ниже.

НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. Тесла Никола

ЭЛЕКТРИЧЕСКИЕ ОСЦИЛЛЯТОРЫ*

ЭЛЕКТРИЧЕСКИЕ ОСЦИЛЛЯТОРЫ*

Мало было открыто таких областей, которые оказались столь урожайными как токи высокой частоты. Их необыкновенные свойства и эффектность демонстрируемых ими явлений сразу же вызвали всеобщее внимание. Научные люди заинтересовались исследованием их, инженеры были привлечены их коммерческими возможностями, а врачи увидели в них долгожданные средства для действенного лечения телесных болезней. Со времен публикации моих первых исследований в 1891 сотни томов были написаны по этому предмету, и множество неоценимых результатов получено с помощью этого нового фактора. Эта область находится еще только во младенчестве, будущее хранит несравненно большее.

С самого начала я чувствовал необходимость сделать эффективный аппарат, отвечающий быстро растущим потребностям, и в течение восьми лет после моих первых сообщений я разработал не меньше пятидесяти типов этих трансформаторов или электрических осцилляторов, каждый из которых был законченным во всех подробностях и усовершенствован до такой степени, что я не смог бы сколько-нибудь существенно улучшить ни один из них сегодня. Если бы мной двигали практические соображения, я мог бы создать большой и прибыльный бизнес, параллельно оказывая всему миру важную услугу. Но сила обстоятельств и постоянно растущие перспективы еще больших достижений обратили мои усилия в другом направлении. И получается так, что скоро на рынок выйдут инструменты, которые, как это ни странно, были полностью завершены двадцать лет назад!

Эти осцилляторы предназначались специально для работы с постоянными и переменными осветительными цепями и для генерации затухающих и незатухающих осцилляции или токов любой частоты, объема и напряжения в широчайших пределах. Они компактны, автономны, не требуют никакого обслуживания в течение длительных периодов времени и оказываются очень удобными и полезными для таких разнообразных целей, как беспроводная телеграфия и телефония; преобразование электрической энергии; получение химических соединений путем сплавления и соединения; синтез газов; производство озона; освещение; сварка; муниципальная, больничная и бытовая санитария и стерилизация, и множество других применений в научных лабораториях и промышленных организациях. Хотя эти трансформаторы никогда ранее не описывались, общие принципы, лежащие в их основе, были полностью изложены в моих печатных статьях и патентах, в особенности за 22 Сентября 1896, и думается поэтому, что прилагаемые фотографии нескольких типов вместе с кратким объяснением дадут всю необходимую информацию.

Существенными частями такого осциллятора являются: конденсатор, катушка самоиндукции для зарядки его до высокого потенциала, контроллер цепи, и трансформатор, который возбуждается осцилляторными разрядами конденсатора. В нем есть по меньшей мере три, а обычно четыре, пять или шесть, согласованных цепей и регулировка, исполняемая несколькими способами, наиболее часто просто с помощью регулировочного винта. Пр и благоприятных обстоятельствах достижима эффективность до 85 %, то есть, такой процент подаваемой энергии можно получить во вторичной обмотке трансформатора. Хот я главное достоинство этого рода аппаратов очевидно обусловлено удивительными свойствами конденсатора, особые положительные характеристики достигаются в результате сочетания цепей с соблюдением правильных гармонических отношений и минимизации потерь на трение и других потерь, что и было одной из главных целей конструкции.

В целом, приборы эти можно разделить на два класса: один, в котором контроллер цепи содержит твердые контакты, и другой, в котором замыкание и размыкание производится ртутью. Рисунки с 1 по 8 включительно относятся к первому, а оставшиеся - ко второму классу. Первые дают заметно большую эффективность из-за того факта, что сопутствующие потери при замыкании и размыкании сведены к минимуму и резистентная составляющая коэффициента затухания очень мала. Вторые предпочтительны для тех целей, где важно получение большего выхода и большего количества прерываний в секунду. Работа мотора и конечно контроллера цепи потребляет определенное количество энергии, которое, однако, становится все менее значимым с ростом мощности машины.

На Рис. 1 показана одна из самых ранних форм осциллятора, сконструированная для экспериментальных целей. Конденсатор содержится в квадратном ящике из красного дерева, на которой смонтированы самоиндукционная или зарядная катушка намотанная, как будет показано, в два секции соединенные параллельно или последовательно, в зависимости от того, какое напряжение в подающей сети, ПО или 220 вольт. Из коробочки торчат четыре латунных колонны, которые поддерживают пластину с пружинными контактами и регулировочными винтами, а также две массивные клеммы для подключения к первичной обмотке трансформатора. Две из этих колонн служат в качестве контактов конденсатора, а пара других соединяют клеммы выключателя спереди от катушки самоиндукции с конденсатором. Первичная обмотка состоит из нескольких витков медной полосы, к концам которой припаяны короткие штыри, входящие в соответствующие клеммы. Вторичная сделана из двух частей, намотанных так, чтобы насколько возможно уменьшить распределенную емкость и в то же время обеспечить, чтобы катушка выдерживала очень высокое напряжение между ее клеммами в центре, которые соединены с пружинными контактами на двух резиновых колоннах, выступающих из первичной обмотки. Соединения цепи могут слегка варьироваться, но обычное их устройство схематически показано в Electrical Experimenter за Май на странице 89, и относится к моему осцилляторному трансформатору, фотография которого приведена на странице 16 в том же номере. Работа его проходит следующим образом: Когда выключатель включается рубильник, ток из цепи питания устремляется через катушку самоиндукции, примагничивая железный сердечник внутри и рассоединяя контакты контроллера. После этого индуцированный ток высокого напряжения заряжает конденсатор, и после замыкания контактов аккумулированная энергия высвобождается через первичную обмотку, вызывая нарастание длинной последовательности осцилляции, которые возбуждают согласованную вторичную цепь.

Устройство показало себя весьма работоспособным при проведении лабораторных экспериментов всех видов. Например, при изучении явления импеданса трансформатор был убран и в клеммы был вставлен согнутый медный прут. Он часто заменялся большой кольцевой петлей для демонстрации индуктивного эффекта на расстоянии или для возбуждения резонансных цепей в различных исследованиях и измерениях. Трансформатор, подходящий для любого желаемого эксперимента, можно легко сымпровизировать и подключить к клеммам, и таким образом было сэкономлено много времени и труда. Вопреки тому, что было бы естественно ожидать, с контактами возникало довольно мало проблем, хотя токи через них были чрезвычайно сильные, так как, при наличии соответствующих условий резонанса, большой поток возникает только когда цепь замкнута, и никаких разрушительных дуг развиться не может. Изначально я использовал платиновые и иридиевые концы, но потом заменил их на meteorite и в конце концов на вольфрам. Последний вариант удовлетворял наилучшим образом, обеспечивая работу в течение многих часов и дней без прерываний.

Рис. 2 показывает небольшой осциллятор, разработанный для определенных научных целей. Основополагающая идея состояла в том, чтобы добиться огромной производительности в течение кратковременных интервалов, после каждого из которых следует сравнительно длинный период бездействия. С этой целью использовались большая катушка самоиндукции и быстродействующий прерыватель, и вследствие такой конструкции конденсатор заряжался до очень высокого потенциала. Были получены внезапные вторичные токи и искры большого объема, особенно подходящие для сварки тонких проводов, вспышек ламп накаливания или сваривания нити ламп-вспышек, зажигания взрывчатых смесей и прочих подобных прикладных целей. Этот прибор был также адаптирован для работы от батареи, и в этом виде был очень эффективным воспламенитель для газовых двигателей, на что патент за номером 609,250 и был получен мной 16 Августа 1893.

На Рис. 3 представлен большой осциллятор первого класса, предназначенный для беспроводных экспериментов, получения Рентгеновских лучей и научных исследований в целом. Он состоит из коробки, содержащей два конденсатора одинаковой емкости, на которой поддерживаются зарядная катушка и трансформатор. Автоматический контроллер цепи, ручной выключатель и соединительные клеммы смонтированы на передней пластине бобины индукционной катушки, как и одна из контактных пружин. Конденсаторная коробка снабжена тремя контактами, из которых два внешних служат просто для подключения, а средний поддерживает контактную пластину с винтом для регулировки интервала, в течение которого цепь замкнута. Сама вибрирующая пружина, единственная функция которой - вызывать периодические прерывания, может быть отрегулирована по своей силе как и по расстоянию от железного сердечника в центре зарядной катушки четырьмя винтами, видимых на верхней пластине, так что обеспечиваются любые желаемые условия механического управления. Первичная катушка трансформатора сделана из медного листа, и подключения сделаны в точках, удобных для целей произвольного варьирования числа витков. Как на Рис. 1 ндукционная катушка намотана в две секции для адаптации прибора как для цепей на 110, так и на 220 вольт, а сделано несколько вторичных обмоток для согласования различных длин волн первичной. Выход был примерно 500 ватт с затухающими волнами примерно 50,000 циклов в секунду. На короткие периоды времени получались незатухающие осцилляции путем подвинчивания вибрационной пружины туго к железному сердечнику и разделения контактов с помощью регулировочного винта, который также исполняет функцию ключа. С этим осциллятором я провел большое количество важных исследований и он был одной из машин, которые демонстрировались на лекции перед Нью Йоркской Академией Наук в 1897.

Рис. 4 - это фотография трансформатора такого типа, который во всех отношениях похож на проиллюстрированный в выпуске Electrical Experimenter за Май 1919, на который уже давалась ссылка. Существенные части в нем такие же, расположены они похожим образом, но он был спроектирован для применения на питающих цепях более высокого напряжения, от 220 до 500 вольт и выше. Обычные настройки выполняются путем регулировки контактной пружины и перемещения железного сердечника внутри катушки индуктивности вверх и вниз с помощью двух винтов. Для предотвращения повреждений в результате короткого замыкания в провода вставлены плавкие предохранители. Прибор сфотографирован в работе, во время генерации незатухающих осцилляции от осветительной сети 220 вольт.

На Рис. 5 показана более поздняя форма трансформатора, предназначенного главным образом для того, чтобы заменить катушку Румкорфа. Для этой цели изменена первичная катушка, в ней гораздо большее количество витков, и вторичная близко с ней связана. Токи, развиваемые в последней, имеют напряжение от 10,000 до 30,000 вольт и обычно применяются для зарядки конденсаторов и работы с независимой катушкой высокой частоты. Механизм регулировки имеет несколько другую конструкцию, но, как и в предыдущем случае, можно регулировать и сердечник, и контактную пружину.

На Рис. 6 - небольшое устройство этого типа, предназначенное специально для получения озона или стерилизации. Оно необыкновенно эффективно для своего размера и может подключаться к сети 110 или 220 вольт, постоянной или переменной, второе предпочтительней.

На Рис. 7 показана фотография более крупного трансформатора данного типа. Конструкция и расположение частей такое же, как и в предыдущем случае, но в ящике находятся два конденсатора, один из которых включен в цепь как в предыдущих случаях, а второй шунтирует первичную катушку. Таким образом, в последней получаются токи огромной величины, и вторичные эффекты усиливаются соответственно. Введение дополнительной согласованной цепи дает также и другие преимущества, но регулировка усложняется, и поэтому желательно использовать такой прибор для получения токов на определенной и неизменной частоте.

Рис. 8 показывает трансформатор с вращающимся прерывателем. В ящике находятся два конденсатора одинаковой емкости, которые можно соединять последовательно и параллельно. Зарядные индуктивности сделаны в виде двух длинных катушек, сверху которых размещаются вторичные клеммы. Небольшой мотор постоянного тока, скорость которого можно менять в широких пределах, используется как привод для прерывателя специальной конструкции. В остальном осциллятор подобен показанному на Рис. 3 и его работу легко можно будет понять из вышеупомянутого. Этот трансформатор применялся в моих беспроводных экспериментах, а также нередко для освещения лаборатории с помощью моих вакуумных трубок и демонстрировался в ходе моей лекции перед Нью Йоркской Академией Наук в 1897, упоминавшейся выше. Перейдем теперь к машинам второго класса. На Рис. 9 показан осцилляторный трансформатор, состоящий из конденсатора и зарядной индуктивности, помещенных в ящик, трансформатора и ртутного контроллера цепи, конструкция которого впервые описана в моем патенте No. 609,251 от 16 Августа 1898. Он состоит приводимого в движение мотором пустотелого шкива, содержащего небольшое количество ртути, которую центробежной силой несет наружу к стенкам сосуда, и она увлекает за собой контактное колесо, которое периодически замыкает и размыкает цепь конденсатора. С помощью регулировочных винтов, находящихся над шкивом, можно произвольно изменять глубину погружения лопаток, а следовательно и продолжительность каждого контакта, таким образом регулируются интенсивность эффектов их характеристики. Этот вид прерывателя удовлетворителен во всех отношениях при работал на токах от 20 до 25 ампер. Число прерываний обычно составляет от

500 до 1,000 в секунду, но можно работать и с более высокими частотами. Объем, занимаемый прибором, составляет 10" X 8" X 10", выход - около 1/2 kW.

В только что описанном трансформаторе прерыватель сообщается с атмосферой и происходит медленное окисление ртути. Этот недостаток преодолен в приборе, показанном на Рис. 10, который состоит из перфорированной металлической коробки, в которой находятся конденсатор и зарядная индуктивность, а сверху - мотор, приводящий в действие прерыватель, и трансформатор. Ртутный прерыватель относится к типу, который надо описать, и работает на принципе струи, которая периодически входит в контакт с вращающимся колесом внутри шкива. Неподвижные части находятся в сосуде на штанге, проходящей через длинный пустотелый вал мотора, и для достижения герметичного закупоривания камеры, в которой находится контроллер цепи, используется ртутный затвор. Ток подается во внутренность шкива через два скользящих кольца, которые находятся на верху и последовательно соединены с конденсатором и первичной катушкой. Предотвращение попадания кислорода - это бесспорное преимущество, потому что исключаются окисление металла и сопутствующие проблемы, и постоянно поддерживаются безукоризненные рабочие условия.

Рис. 11 - это фотография аналогичного осциллятора с герметически закрытым ртутным прерывателем. В этой машине неподвижные части прерывателя внутри шкива находятся на трубке, через которую проходит изолированный провод, соединенный с одним контактом прерывателя, а другой находится в контакте с сосудом. Таким образом, скользящих колец удалось избежать и конструкция упростилась. Этот прибор был разработан для осцилляции меньшего напряжения и частоты, требовал первичных токов сравнительно меньшего ампеража, и использовался для возбуждения других резонансных цепей.

Рис. 12 показывает улучшенную форму осциллятора типа описанного на Рис. 10, в котором от поддерживающей штанги через полый вал мотора избавились, и устройство, накачивающее ртуть, поддерживается в своем положении за счет силы тяжести, как будет более подробно разъяснено в связи с другим рисунком. И емкость конденсатора, и первичные витки были сделаны переменными для целей получения осцилляции нескольких частот.

Рис. 13 - это фотографическое изображение другой формы осцилляторного трансформатора с герметически закрытым ртутным прерывателем, а диаграммы на Рис. 14 показывают соединения цепи и организацию частей, воспроизведенные из моего патента No. 609,245 от 15 Августа 1898, описывающего именно это устройство. Конденсатор, индуктивность, трансформатор и контроллер цепи расположены как и раньше, но последний имеет другую конструкцию, что станет ясно из рассмотрения Рис. 14. Полый шкив а укреплен на валу С, который установлен в вертикальном подшипнике, проходящем через постоянный магнит d мотора. Внутри сосуда на бесфрикционных подшипниках находится тело h из магнитного материала, которое окружено колпаком b в центре пластинчатого железного кольца на полярные участки которого 00 намотаны зарядные катушки р. Кольцо удерживается на четырех колоннах, и, когда намагничено, удерживает тело h в одном положении во врем; вращения шкива. Последний изготовлен из стали, но колпак лучше делать из Немецкого серебра, черненого кислотой, или никелированным. На теле h держится короткая трубка к, согнутая, как показано, для улавливания жидкости, когда она раскручивается, и выпускания ее на зубцы колеса, крепящегося к шкиву. Колесо показано на рисунке, контакт между ним и внешней цепью устанавливается через чашку со ртутью. Когда шкив быстро вращается, струя жидкости устремляется к колесу, тем самым устанавливая и разрывая контакт примерно 1,000 раз в секунду. Прибор работает тихо и, благодаря отсутствию окисляющихся частей, всегда остается чистым и в отличном состоянии. При этом, число прерываний в секунду может быть гораздо больше, давая токи, пригодные для беспроводной телеграфии и подобных целей.

Модифицированная форма осциллятора показана на Рис. 15 и 16, на первом из них фотографическое изображение, а на втором - схематическая иллюстрация, показывающая устройство внутренних частей контроллера. В данном случае, вал b, на котом крепится сосуд а, полый и поддерживает, в бесфрикционных подшипниках, шпиндель j, к которому крепится вес к. На изогнутом кронштейн е L, изолированном от последнего, но механически прикрепленному к нему, закреплено свободно вращающееся прерывающее колесо с выступами QQ. Колесо находится в электрическом контакте с внешней цепью через чашку со ртутью и изолированную втулку, крепящуюся со верхней стороны шкива. Благодаря наклонному положению мотора вес к удерживает прерывающее колесо в его положении за счет силы тяжести, и при вращении шкива цепь, в которую входят конденсатор и первичная катушка трансформатора, быстро замыкается и размыкается.

Рис. 17 показывает похожий прибор, в котором однако прерывающее устройство состоит из струи ртути, сталкивающейся с изолированным зубчатым колесом, держащемся на изолированном штифте в центре кожуха шкива, как показано. Соединение с цепью конденсатора идет через щетки, держащиеся на этом штифте.

Рис. 18 - фотография другого трансформатора с ртутным контроллером цепи колесного типа, в модифицированного некоторых отношениях, распространяться о которых надобности нет.

Это только лишь немногие из осцилляторных трансформаторов, которые я построил, и которые составляют только малую часть моих высокочастотных приборов, которым я надеюсь дать полное описание когда-нибудь в будущем, когда освобожусь от неотложной работы.

Из книги Откровения Николы Теслы автора Тесла Никола

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Эволюция физики автора Эйнштейн Альберт

Две электрические жидкости Последующие страницы содержат скучный отчет о некоторых очень простых экспериментах. Отчет будет скучным не только потому, что описание экспериментов неинтересно по сравнению с самим осуществлением их, но и потому, что самый смысл

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

Глава седьмая Электрические опыты Наэлектризованный гребень Если вы еще даже ничего не знаете из науки об электричестве, не знакомы даже с первыми буквами ее азбуки, вы и в таком случае можете проделать ряд электрических опытов, любопытных и во всяком случае полезных

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

Электрические опыты с газетой Гораздо более разнообразные опыты, чем с «кошачьим» электричеством, можно проделывать с электричеством «газетным», извлекаемым из газетного листа. В детстве меня забавлял ими старший брат; я поделюсь с читателем этими

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

ВЫСОКОЧАСТОТНЫЕ ОСЦИЛЛЯТОРЫ ДЛЯ ЭЛЕКТРОТЕРАПИИ И ДРУГИХ ЦЕЛЕЙ* Заняться систематическими исследованиями феномена высокой частоты в 1889 году меня побудили некоторые теоретические возможности токов очень высокой частоты, случайные наблюдения во время проведения

Из книги автора

ЭЛЕКТРИЧЕСКИЕ ВОЗМОЖНОСТИ, СКРЫТЫЕ В УГЛЕ И ЖЕЛЕЗЕ Многие "вот-если-бы" исследователи, терпя неудачу в своих попытках, чувствовали досаду от того, что родились в то время, когда все уже создано и не осталось ничего, что нужно сделать. Это ложное ощущение, что по мере нашего

Из книги автора

ВОЕННЫЕ ЭЛЕКТРИЧЕСКИЕ ИЗОБРЕТЕНИЯ Нынешний международный конфликт - это мощный стимул к изобретению устройств и орудий войны. Скоро сделают электрическую пушку. Удивительно, что ее не сделали давным- давно. Дирижабли и аэропланы будут оборудоваться небольшими

Из книги автора

Магнитные, электрические и гравитационные поля Силовые линии магнитных полей играют большую роль во Вселенной и очень важны для понимания «Интерстеллар», поэтому стоит поговорить о них, прежде чем углубиться в научные аспекты фильма.Наверное, на уроках физики вам

Николу Тесла кто-то считает гением, кто-то мошенником. Но в любом случае в блестящем уме и развитом воображении этому человеку отказать невозможно. Он предложил множество инновационных идей. Некоторые нашли реальное применение, некоторые были названы современниками безумными или опасными для человечества. В нашем обзоре 10-ка самых гениальных идей учёного-фантазёра.

1. Использование космических лучей


Среди различных увлечений Тесла фигурировала идея освоения свободной энергии. Свободную энергию можно получить из таких мест, как атомная энергия или лучистая энергия, и она могла бы обеспечить практически бесконечные ресурсы при минимальным затратах. Тем не менее, идея освоения свободной энергии рассматривается как лженаука большинством исследователей.

Тесла считал, что если бы он мог построить работоспособную машину, чтобы использовать эту энергию, то энергетические проблемы в мире, наконец, закончились бы. Он даже запатентовал изобретение, которое было способно напрямую преобразовать ионы в полезную энергию, но машина эта так и не была создана.

2. Электродинамическая индукция


Тесла считают отцом переменного тока, но сам он мечтал о мире, в котором была бы беспроводная сеть передачи энергии. Чтобы сделать это, он предложил создать Всемирную беспроводную систему, которая будет состоять из башен Тесла, передающих электроэнергию без проводов по всему миру. Он доказал жизнеспособность своей идеи на наглядном примере - демонстрируя на публике зажженную лампочку, которая находилась в метре от катушки Тесла.

Воплощать свою мечту Тесла начал, построив башню Wardenclyffe в Нью-Йорке. К сожалению, строительство перестали финансировать после того, как банк-спонсор JP Morgan узнал, что Тесла планирует раздавать всем электроэнергию бесплатно. Если бы Тесла воплотил свою идею, то люди должны были получить бесплатную и неограниченную энергию, причем из полностью возобновляемых источников, не имеющих негативного воздействия на окружающую среду или людей.

3. Холодный огонь


Тесла хотел отказаться раз и навсегда от использования мыла и воды в ванных комнатах.
Под воздействием аномалии, известной как "холодный огонь», человеческое тело находится под напряжением переменного тока в 2,5 миллионов вольт, при этом человек должен стоять на металлической пластине. Со стороны это выглядит так, как будто человек полностью окутан огнем. Этот метод работает благодаря проводимости человеческой кожи и, как правило, он эффективнее, чем мытье с мылом и водой. Также Тесла утверждал, что с помощью холодного огня человек не только очищается, а и получает огромный заряд бодрости. Об этом изобретении забыли из-за отсутствия финансирования.

4. Тесласкоп


Ещё одно изобретение Тесла - устройство для общения с инопланетянами. Учёный утверждал, что он смог несколько раз пообщаться со внеземной жизнью, используя свой тесласкоп. Также тесласкоп можно было использовать как "гиперпространственный осциллятор", преобразуя космические лучи в энергию, которая может быть использована человеком. Этот прибор смог бы передавать огромное количество энергии в пространстве без учета расстояния. Правда, лишь немногие поверили Тесле, поскольку у него не было никаких доказательств этой теории. Тесла считал, что доказать существование жизни на Марсе можно, используя гигантские отражатели, установленные на поверхности Земли.

5. Луч смерти Теслы


Хотя многие изобретения Теслы могут показаться опасными, сам гений ненавидел войну и потратил массу времени и энергии на создание "Луча смерти", который был в состоянии предотвратить любую войну. Луч Смерти представлял из себя ускоритель частиц, способный выстреливать лучом энергии на расстояние более 400 км. Тесла утверждал, что этот луч может расплавить двигатели и сбить любой самолет. На создание ему были нужны всего $ 2 000 000,но изобретатель так и не нашел денег. Когда Тесла попытался передать идею своему инвестору JP Morgan, то банк отказался.

6. Управление погодой


Тесла полагал, что погодой на планете можно управлять. И плодородные сельскохозяйственные угодья могут быть созданы в любой окружающей среде путем использования определенных радиоволн, которые локально изменят магнитное поле Земли.

Тесла получил множество патентов на свои изобретения по контролю погодой и якобы доказал, что волны могут быть использованы для управления погодой. Некоторые теоретики заговора считают, что бумаги Тесла в конечном счете, попали в чужие руки, и используются сегодня, чтобы управлять погодой.

7. Рентгеновская пушка


Над проблемой рентгеновского излучения работали многие учёные, в том числе и Тесла. Используя оригинальные конструкции Рентгена, Тесла продолжил его эксперименты с рентгеновскими лучами. В это время Тесла очень близко подружился с Марком Твеном, который часто посещал салоны Тесла после того, как изобретатель вылечил его от запора. Твен и Тесла часто ставили эксперименты с рентгеновской пушкой, которую изобрел Тесла, пытаясь пробить пучком рентгеновского излучения лист бумаги. Но сделать это им не удалось.

8. Переменный ток


В 1882 году Никола Тесла переехал в Париж и начал работать с Томасом Эдисоном. Эдисон уже открыл постоянный ток, который, как он думал, решит проблемы с электричеством всего человечества.
С генератором постоянного тока было несколько проблем, и Эдисон пообещал $ 50 000 Тесла, если тот сможет переделать генератор и исправить проблемы. Тесла выполнил свою часть проекта и передал Эдисону несколько патентов для решения его проблем. Однако, обещанных денег Тесла так и не получил. В результате он ушел от Эдисона и основал свою собственную компанию и начал развивать новый вид электроэнергии, известный как переменный ток. Его открытие имело ряд очевидных и существенных преимуществ по сравнению с постоянным током.

Эдисон был в ярости, узнав, что его ученик проводит свои собственные эксперименты, и предпринял все усилия, чтобы дискредитировать переменный ток. Эдисон стал утверждать, что переменный ток может привести к пожару и смертям. К счастью, ему это не удалось, и сегодня все пользуются переменным током.


Тесла полагал, что можно осветить весь мир, позволив сократить потребность в электроэнергии. Он хотел использовать принцип разреженной газовой люминесценции, которая гласит, что определенные частицы газа испускают свечение, когда они возбуждаются энергией. Изобретатель планировал "выстрелить"сильным пучком ультрафиолетовой энергии и верхнее части нашей атмосферы. Это должно было заставить частицы в атмосфере светиться по всей Земле, подобно северному сиянию.
Тесла считал, что с помощью его метода, можно предотвратить несчастные случаи, такие как с Титаником. Но идеи изобретателя не поддержали.

10. Осциллятор Теслы


Все состоит из атомов, и в каждом объекте атомы вибрируют на своей собственной частоте. Когда частота колебаний механической системы совпадает с естественной частотой вибрации атомов, система входит в резонанс. Примером может служит мост через пролив Такома, который рухнул войдя в резонанс сравнительно слабым ветром.

Используя эту концепцию, Тесла разработали карманную машину, способную разрушить здание. При эксперименте с осциллятором начался странный шум и вокруг машины начали змеиться молнии. Затем все в его лаборатории начало летать вокруг машины. Тесла был вынужден разбить машину молотком, прежде чем рухнуло все здание.
Тесла думал, что его машина будет иметь возможность передавать механическую энергию в любую точку мира, используя "телегеодинамику", а также считал, что она обладает целебными свойствами (если подобрать естественную частоту вибрации человеческого тела).

Сегодня наука движется вперёд просто гигантскими шагами. Про , мы рассказывали в одном из наших предыдущих обзоров.