Задан ряд распределения дискретной случайной величины. Дискретная случайная величина, закон распределения вероятностей

Х ; значение F (5); вероятность того, что случайная величина Х примет значения из отрезка . Построить многоугольник распределения.

  1. Известна функция распределения F(x) дискретной случайной величины Х :

Задать закон распределения случайной величины Х в виде таблицы.

  1. Дан закон распределения случайной величины Х :
Х –28 –20 –12 –4
p 0,22 0,44 0,17 0,1 0,07
  1. Вероятность того, что в магазине есть сертификаты качества для полного ассортимента товаров, равна 0,7. Комиссия проверила наличие сертификатов в четырёх магазинах района. Составить закон распределения, вычислить математическое ожидание и дисперсию числа магазинов, в которых при проверке не обнаружены сертификаты качества.
  1. Для определения средней продолжительности горения электроламп в партии из 350 одинаковых ящиков было взято на проверку по одной электролампе из каждого ящика. Оценить снизу вероятность того, что средняя продолжительность горения отобранных электроламп отличается от средней продолжительности горения всей партии по абсолютной величине меньше чем на 7 часов, если известно, что среднее квадратичное отклонение продолжительности горения электроламп в каждом ящике меньше 9 часов.
  1. На телефонной станции неправильное соединение происходит с вероятностью 0,002. Найти вероятность того, что среди 500 соединений произойдёт:

Найти функцию распределения случайной величины Х . Построить графики функций и . Вычислить математическое ожидание, дисперсию, моду и медиану случайной величины Х .

  1. Станок-автомат изготавливает валики. Считается, что их диаметр – нормально распределённая случайная величина со средним значением 10мм. Чему равно среднее квадратичное отклонение, если с вероятностью 0,99 диаметр заключён в интервале от 9,7мм до 10,3мм.

Выборка А : 6 9 7 6 4 4

Выборка В: 55 72 54 53 64 53 59 48

42 46 50 63 71 56 54 59

54 44 50 43 51 52 60 43

50 70 68 59 53 58 62 49

59 51 52 47 57 71 60 46

55 58 72 47 60 65 63 63

58 56 55 51 64 54 54 63

56 44 73 41 68 54 48 52

52 50 55 49 71 67 58 46

50 51 72 63 64 48 47 55

Вариант 17.

  1. Среди 35 деталей 7 нестандартных. Найти вероятность того, что две наудачу взятые детали окажутся стандартными.
  1. Бросают три игральные кости. Найти вероятность того, что сумма очков на выпавших гранях кратна 9.
  1. Слово «ПРИКЛЮЧЕНИЕ» составлено из карточек, на каждой из которых написана одна буква. Карточки перемешивают и вынимают без возврата по одной. Найти вероятность того, что вынимаемые буквы в порядке появления образуют слово: а) ПРИКЛЮЧЕНИЕ; б) ПЛЕН.
  1. В урне содержится 6 чёрных и 5 белых шаров. Случайным образом вынимают 5 шаров. Найти вероятность того, что среди них имеются:
    1. 2 белых шара;
    2. меньше чем 2 белых шара;
    3. хотя бы один чёрный шар.
  1. А в одном испытании равна 0,4. Найти вероятности следующих событий:
    1. событие А появится 3 раза в серии из 7 независимых испытаний;
    2. событие А появится не менее 220 и не более 235 раз в серии из 400 испытаний.
  1. Завод отправил на базу 5000 доброкачественных изделий. Вероятность повреждения каждого изделия в пути равна 0,002. Найти вероятность того, что в пути будет повреждено не более 3 изделий.
  1. В первой урне 4 белых и 9 чёрных шаров, а во второй урне 7 белых и 3 чёрных шара. Из первой урны случайным образом вынимают 3 шара, а из второй урны – 4. Найти вероятность того, что все вынутые шары одного цвета.
  1. Дан закон распределения случайной величины Х :

Вычислить её математическое ожидание и дисперсию.

  1. В коробке лежат 10 карандашей. Наудачу извлекается 4 карандаша. Случайная величина Х – число синих карандашей среди отобранных. Найти закон её распределения, начальный и центральные моменты 2-го и 3-го порядков.
  1. Отдел технического контроля проверяет 475 изделий на брак. Вероятность того, что изделие бракованное равна 0,05. Найти с вероятностью 0,95 границы, в которых будет заключено количество бракованных изделий среди проверенных.
  1. На телефонной станции неправильное соединение происходит с вероятностью 0,003. Найти вероятность того, что среди 1000 соединений произойдёт:
    1. хотя бы 4 неправильных соединения;
    2. более двух неправильных соединений.
  1. Случайная величина задана функцией плотности распределения:

Найти функцию распределения случайной величины Х . Построить графики функций и . Вычислить математическое ожидание, дисперсию, моду и медиану случайной величины Х.

  1. Случайная величина задана функцией распределения:
  1. По выборке А решить следующие задачи:
    1. составить вариационный ряд;

· выборочное среднее;

· выборочную дисперсию;

Моду и медиану;

Выборка А: 0 0 2 2 1 4

    1. вычислить числовые характеристики вариационного ряда:

· выборочное среднее;

· выборочную дисперсию;

· стандартное выборочное отклонение;

· моду и медиану;

Выборка В: 166 154 168 169 178 182 169 159

161 150 149 173 173 156 164 169

157 148 169 149 157 171 154 152

164 157 177 155 167 169 175 166

167 150 156 162 170 167 161 158

168 164 170 172 173 157 157 162

156 150 154 163 143 170 170 168

151 174 155 163 166 173 162 182

166 163 170 173 159 149 172 176

Вариант 18.

  1. Среди 10 лотерейных билетов 2 являются выигрышными. Найти вероятность того, что из взятых наудачу пяти билетов один окажется выигрышным.
  1. Бросают три игральные кости. Найти вероятность того, что сумма выпавших очков больше 15.
  1. Слово «ПЕРИМЕТР» составлено из карточек, на каждой из которых написана одна буква. Карточки перемешивают и вынимают без возврата по одной. Найти вероятность того, что вынимаемые буквы образуют слово: а) ПЕРИМЕТР; б) МЕТР.
  1. В урне содержится 5 чёрных и 7 белых шаров. Случайным образом вынимают 5 шаров. Найти вероятность того, что среди них имеются:
    1. 4 белых шара;
    2. меньше чем 2 белых шара;
    3. хотя бы один чёрный шар.
  1. Вероятность наступления события А в одном испытании равна 0,55. Найти вероятности следующих событий:
    1. событие А появится 3 раза в серии из 5 испытаний;
    2. событие А появится не менее 130 и не более 200 раз в серии из 300 испытаний.
  1. Вероятность нарушения герметичности банки консервов равна 0,0005. Найти вероятность того, что среди 2000 банок две окажутся с нарушением герметичности.
  1. В первой урне 4 белых и 8 чёрных шаров, а во второй урне 7 белых и 4 чёрных шара. Из первой урны случайным образом вынимают 2 шара и из второй урны случайным образом вынимают по три шара. Найти вероятность того, что все вынутые шары одного цвета.
  1. Среди поступающих на сборку деталей, с первого станка 0,1% бракованных, со второго – 0,2%, с третьего – 0,25%, с четвёртого – 0,5%. Производительности станков относятся соответственно как 4:3:2:1. Взятая наудачу деталь оказалась стандартной. Найти вероятность того, что деталь изготовлена на первом станке.
  1. Дан закон распределения случайной величины Х :

Вычислить её математическое ожидание и дисперсию.

  1. У электромонтёра три лампочки, каждая из которых имеет дефект с вероятностью 0,1.. Лампочки ввинчиваются в патрон и включается ток. При включении тока дефектная лампочка сразу же перегорает и заменяется другой. Найти закон распределения, математическое ожидание и дисперсию числа опробованных лампочек.
  1. Вероятность поражения цели равна 0,3 при каждом из 900 независимых выстрелов. Пользуясь неравенством Чебышева, оценить вероятность того, что цель будет поражена не менее 240 раз и не более 300 раз.
  1. На телефонной станции неправильное соединение происходит с вероятностью 0,002. Найти вероятность того, что среди 800 соединений произойдёт:
    1. хотя бы три неправильных соединения;
    2. более четырёх неправильных соединений.
  1. Случайная величина задана функцией плотности распределения:

Найти функцию распределения случайной величины Х. Построить графики функций и . Вычислить математическое ожидание, дисперсию, моду и медиану случайной величины Х.

  1. Случайная величина задана функцией распределения:
  1. По выборке А решить следующие задачи:
    1. составить вариационный ряд;
    2. вычислить относительные и накопленные частоты;
    3. составить эмпирическую функцию распределения и построить её график;
    4. вычислить числовые характеристики вариационного ряда:

· выборочное среднее;

· выборочную дисперсию;

· стандартное выборочное отклонение;

· моду и медиану;

Выборка А : 4 7 6 3 3 4

  1. По выборке В решить следующие задачи:
    1. составить группированный вариационный ряд;
    2. построить гистограмму и полигон частот;
    3. вычислить числовые характеристики вариационного ряда:

· выборочное среднее;

· выборочную дисперсию;

· стандартное выборочное отклонение;

· моду и медиану;

Выборка В : 152 161 141 155 171 160 150 157

154 164 138 172 155 152 177 160

168 157 115 128 154 149 150 141

172 154 144 177 151 128 150 147

143 164 156 145 156 170 171 142

148 153 152 170 142 153 162 128

150 146 155 154 163 142 171 138

128 158 140 160 144 150 162 151

163 157 177 127 141 160 160 142

159 147 142 122 155 144 170 177

Вариант 19.

1. На участке работают 16 женщин и 5 мужчин. По табельным номерам отобраны наудачу 3 человека. Найти вероятность того, что все отобранные люди окажутся мужчинами.

2. Бросают четыре монеты. Найти вероятность того, что только на двух монетах появится «герб».

3. Слово «ПСИХОЛОГИЯ» составлено из карточек, на каждой из которых написана одна буква. Карточки перемешивают и вынимают без возврата по одной. Найти вероятность того, что вынимаемые буквы образуют слово: а) ПСИХОЛОГИЯ; б) ПОСОХ.

4. В урне содержится 6 чёрных и 7 белых шаров. Случайным образом вынимают 5 шаров. Найти вероятность того, что среди них имеются:

a. 3 белых шара;

b. меньше чем 3 белых шара;

c. хотя бы один белый шар.

5. Вероятность наступления события А в одном испытании равна 0,5. Найти вероятности следующих событий:

a. событие А появится 3 раза в серии из 5 независимых испытаний;

b. событие А появится не менее 30 и не более 40 раз в серии из 50 испытаний.

6. Имеется 100 станков одинаковой мощности, работающих независимо друг от друга в одинаковом режиме, при котором их привод оказывается включенным в течение 0,8 рабочего времени. Какова вероятность того, что в произвольно взятый момент времени окажутся включенными от 70 до 86 станков?

7. В первой урне 4 белых и 7 чёрных шаров, а во второй урне 8 белых и 3 чёрных шара. Из первой урны случайным образом вынимают 4 шара, а из второй – 1 шар. Найти вероятность того, что среди вынутых шаров только 4 чёрных шара.

8. В салон по продаже автомобилей ежедневно поступают автомобили трёх марок в объёмах: «Москвич» – 40%; «Ока» – 20%; «Волга» – 40% от всех привезённых машин. Среди машин марки «Москвич» 0,5% имеют противоугонное устройство, «Ока» – 0,01%, «Волга» – 0,1%. Найти вероятность того, что взятая для проверки машина имеет противоугонное устройство.

9. На отрезке наудачу выбраны числа и . Найти вероятность того, что эти числа удовлетворяют неравенствам .

10. Дан закон распределения случайной величины Х :

Х
p 0,1 0,2 0,3 0,4

Найти функцию распределения случайной величины Х ; значение F (2); вероятность того, что случайная величина Х примет значения из интервала . Построить многоугольник распределения.

На этой странице мы собрали примеры решения учебных задач о дискретных случайных величинах . Это довольно обширный раздел: изучаются разные законы распределения (биномиальный, геометрический, гипергеометрический, Пуассона и другие), свойства и числовые характеристики, для каждого ряда распределения можно строить графические представления: полигон (многоугольник) вероятностей, функцию распределения.

Ниже вы найдете примеры решений о дискретных случайных величинах, в которых требуется применить знания из предыдущих разделов теории вероятностей для составления закона распределения, а затем вычислить математическое ожидание, дисперсию, среднее квадратическое отклонение, построить функцию распределения, дать ответы на вопросы о ДСВ и т.п.

Примеры для популярных законов распределения вероятностей:


Калькуляторы на характеристики ДСВ

  • Вычисление математического ожидания, дисперсии и среднего квадратического отклонения ДСВ .

Решенные задачи о ДСВ

Распределения, близкие к геометрическому

Задача 1. На пути движения автомашины 4 светофора, каждый из которых запрещает дальнейшее движение автомашины с вероятностью 0,5. Найти ряд распределения числа светофоров, пройденных машиной до первой остановки. Чему равны математическое ожидание и дисперсия этой случайной величины?

Задача 2. Охотник стреляет по дичи до первого попадания, но успевает сделать не более четырех выстрелов. Составить закон распределения числа промахов, если вероятность попадания в цель при одном выстреле равна 0,7. Найти дисперсию этой случайной величины.

Задача 3. Стрелок, имея 3 патрона, стреляет в цель до первого попадания. Вероятности попадания при первом, втором и третьем выстрелах соответственно 0,6, 0,5, 0,4. С.В. $\xi$ - число оставшихся патронов. Составить ряд распределения случайной величины, найти математическое ожидание, дисперсию, среднее квадратичное отклонение с.в., построить функцию распределения с.в., найти $P(|\xi-m| \le \sigma$.

Задача 4. В ящике содержится 7 стандартных и 3 бракованных детали. Вынимают детали последовательно до появления стандартной, не возвращая их обратно. $\xi$ - число извлеченных бракованных деталей.
Составить закон распределения дискретной случайной величины $\xi$, вычислить ее математическое ожидание, дисперсию, среднее квадратическое отклонение, начертить многоугольник распределения и график функции распределения.

Задачи с независимыми событиями

Задача 5. На переэкзаменовку по теории вероятностей явились 3 студента. Вероятность того, что первый сдаст экзамен, равна 0,8, второй - 0,7, третий - 0,9. Найдите ряд распределения случайной величины $\xi$ числа студентов, сдавших экзамен, постройте график функции распределения, найдите $М(\xi), D(\xi)$.

Задача 6. Вероятность попадания в цель при одном выстреле равна 0,8 и уменьшается с каждым выстрелом на 0,1. Составить закон распределения числа попаданий в цель, если сделано три выстрела. Найти математическое ожидание, дисперсию и С.К.О. этой случайной величины. Построить график функции распределения.

Задача 7. По цели производится 4 выстрела. Вероятность попадания при этом растет так: 0,2, 0,4, 0,6, 0,7. Найти закон распределения случайной величины $X$ - числа попаданий. Найти вероятность того, что $X \ge 1$.

Задача 8. Подбрасываются две симметричные монеты, подсчитывается число гербов на обеих верхних сторонах монет. Рассматривается дискретная случайная величина $X$- число выпадений гербов на обеих монетах. Записать закон распределения случайной величины $X$, найти ее математическое ожидание.

Другие задачи и законы распределения ДСВ

Задача 9. Два баскетболиста делают по три броска в корзину. Вероятность попадания для первого баскетболиста равна 0,6, для второго – 0,7. Пусть $X$ - разность между числом удачных бросков первого и второго баскетболистов. Найти ряд распределения, моду и функцию распределения случайной величины $X$. Построить многоугольник распределения и график функции распределения. Вычислить математическое ожидание, дисперсию и среднее квадратичное отклонение. Найти вероятность события $(-2 \lt X \le 1)$.

Задача 10. Число иногородних судов, прибывающих ежедневно под погрузку в определенный порт – случайная величина $X$, заданная так:
0 1 2 3 4 5
0,1 0,2 0,4 0,1 0,1 0,1
А) убедитесь, что задан ряд распределения,
Б) найдите функцию распределения случайной величины $X$,
В) если в заданный день прибывает больше трех судов, то порт берет на себя ответственность за издержки вследствие необходимости нанимать дополнительных водителей и грузчиков. Чему равна вероятность того, что порт понесет дополнительные расходы?
Г) найдите математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины $X$.

Задача 11. Бросают 4 игральные кости. Найти математическое ожидание суммы числа очков, которые выпадут на всех гранях.

Задача 12. Двое поочередно бросают монету до первого появления герба. Игрок, у которого выпал герб, получает от другого игрока 1 рубль. Найти математическое ожидание выигрыша каждого игрока.

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и в свою очередь, случайная величина называется дискретной , если множество её значений конечно или счётно.

Кроме дискретных случайных величин существуют также непрерывные случайные величины.

Рассмотрим более подробно понятие случайной величины. На практике часто встречаются величины, которые могут принимать некоторые значения, но нельзя достоверно предсказать, какое именно значение каждая из них примет в рассматриваемом опыте, явлении, наблюдении. Например, число мальчиков, которые родятся в Москве в ближайший день, может быть различным. Оно может быть равным нулю (не родится ни одного мальчика: родятся все девочки или вообще не будет новорождённых), одному, двум и так далее до некоторого конечного числа n . К подобным величинам относятся: масса корнеплода сахарной свеклы на участке, дальность полёта артиллерийского снаряда, количество бракованных деталей в партии и так далее. Такие величины будем называть случайными. Они характеризуют все возможные результаты опыта или наблюдения с количественной стороны.

Примерами дискретных случайных величин с конечным числом значений могут служить число родившихся детей в течение дня в населённом пункте, число пассажиров автобуса, число пассажиров, перевезённых московским метро за сутки и т. п.

Число значений дискретной случайной величины может быть и бесконечным, но счётным множеством. Но в любом случае их можно в каком-то порядке пронумеровать, или, более точно - установить взаимно-однозначное соответствие между значениями случайной величины и натуральными числами 1, 2, 3, ..., n .

Внимание: новое, очень важное понятие теории вероятностей - закон распределения . Пусть X может принимать n значений: . Будем считать, что они все различны (в противном случае одинаковые должны быть объединены) и расположены в возрастающем порядке. Для полной характеристики дискретной случайной величины должны быть заданы не только все её значения, но и верояности , с которыми случайная величина принимает каждое из значений, т. е. .

Законом распределения дискретной случайной величины называется любое правило (функция, таблица) p (x ), позволяющее находить вероятности всевозможных событий, связанных со случайной величиной (например, вероятность того, что она пример какое-то значение или попадёт в какой-то интервал).

Наиболее просто и удобно закон распределения дискретной случайной величины задавать в виде следующей таблицы:

Значение ...
Вероятность ...

Такая таблица называется рядом распределения дискретной случайной величины . В верхней строке ряда распределения перечислены в порядке возрастания все возможные значения дискретной случайной величины (иксы), а в нижней - вероятности этих значений (p ).

События являются несовместимыми и единственно возможными: они образуют полную систему событий. Поэтому сумма их вероятностей равна единице:

.

Пример 1. В студенческой группе организована лотерея. Разыгрывается две вещи стоимостью по 1000 руб. и одна стоимостью по 3000 руб. Составить закон распределения суммы чистого выигрыша для студента, который приобрёл один билет за 100 руб. Всего продано 50 билетов.

Решение. Интересующая нас случайная величина X может принимать три значения: - 100 руб. (если студент не выиграет, а фактически проиграет 100 руб., уплаченные им за билет), 900 руб. и 2900 руб. (фактический выигрыш уменьшается на 100 руб. - на стоимость билета). Первому результату благоприятствуют 47 случаев из 50, второму - 2, а третьему - один. Поэтому их вероятности таковы: P (X =-100)=47/50=0,94 , P (X =900)=2/50=0,04 , P (X =2900)=1/50=0,02 .

Закон распределения дискретной случайной величины X имеет вид

Сумма выигрыша -100 900 2900
Вероятность 0,94 0,04 0,02

Функция распределения дискретной случайной величины: построение

Ряд распределения может быть построен только для дискретной случайной величины (для недискретной он не может быть построен хотя бы потому, что множество возможных значений такой случайной величины несчётно, их нельзя перечислить в верхней строке таблицы).

Наиболее общей формой закона распределения, пригодной для всех случайных величин (как дискретных, так и недискретных), является функция распределения.

Функцией распределения дискретной случайной величины или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х .

Функция распределения любой дискретной случайной величины есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины, и равны вероятностям этих значений.

Пример 2. Дискретная случайная величина X - число очков, выпавших при бросании игральной кости. Постоить её функцию распределения.

Решение. Ряд распределения дискретной случайной величины X имеет вид:

Значение 1 2 3 4 5 6
Вероятность 1/6 1/6 1/6 1/6 1/6 1/6

Функция распределения F (x ) имеет 6 скачков, равных по величине 1/6 (на рисунке внизу).

Пример 3. В урне 6 белых шаров и 4 чёрных шара. Из урны вынимают 3 шара. Число белых шаров среди вынутых шаров - дискретная случайная величина X . Составить соответствующий ей закон распределения.

X может принимать значения 0, 1, 2, 3. Соответствующие им вероятности проще всего вычислисть по правилу умножения вероятностей . Получаем следующий закон распределения дискретной случайной величины:

Значение 0 1 2 3
Вероятность 1/30 3/10 1/2 1/6

Пример 4. Составить закон распределения дискретной случайной величины - числа попаданий в цель при четырёх выстрелах, если вероятность попадания при одном выстреле равна 0,1.

Решение. Дискретная случайная величина X может принимать пять различных значений: 1, 2, 3, 4, 5. Соответствующие им вероятности найдём по формуле Бернулли . При

n = 4 ,

p = 1,1 ,

q = 1 - p = 0,9 ,

m = 0, 1, 2, 3, 4

получаем

Следовательно, закон распределения дискретной случайной величины X имеет вид

Если вероятности значений дискретной случайной величины можно определить по формуле Бернулли, то случайная величина имеет биномиальное распределение .

Если число испытаний достаточно велико, то вероятность того, что в этих испытаниях интересующее событие наступит именно m раз, подчиняется закону распределения Пуассона .

Функция распределения дискретной случайной величины: вычисление

Чтобы вычислить функцию распределения дискретной случайной величины F (х ), требуется сложить вероятности всех тех значений, которые меньше или равны граничному значению х .

Пример 5. В таблице данные о зависимости числа расторгнутых в течение года браков от длительности брака. Найти вероятность того, что очередной расторгнутый брак имел длительность менее или равную 5 годам.

Длительность брака (лет) Число Вероятность F (x )
0 10 0,002 0,002
1 80 0,013 0,015
2 177 0,029 0,044
3 209 0,035 0,079
4 307 0,051 0,130
5 335 0,056 0,186
6 358 0,060 0,246
7 413 0,069 0,314
8 432 0,072 0,386
9 402 0,067 0,453
10 и более 3287 0,547 1,000
Всего 6010 1

Решение. Вероятности вычислены путём деления числа соответствующих расторгнутых браков на общее число 6010. Вероятность того, что очередной расторгнутый брак был длительностью в 5 лет, равна 0,056. Вероятность, что длительность очередного расторгнутого брака меньше или равна 5 годам, равна 0,186. Мы получили её, прибавив к значению F (x ) для браков с длительностью по 4 года включительно вероятность для браков с длительностью в 5 лет.

Связь закона распределения дискретной случайной величины с математическим ожиданием и дисперсией

Часто не все значения дискретной случайной величины известны, но известны некоторые значения или вероятности из ряда, а также математическое ожидание и (или) дисперсия случайной величины , которым посвящён отдельный урок.

Приведём здесь некоторые формулы из этого урока, которые могут выручить при составлении закона распределения дискретной случайной величины и разберём примеры решения таких задач.

Математическое ожидание дискретной случайной величины - сумма произведений всех возможных её значений на вероятности этих значений:

(1)

Формула дсперсии дискретной случайной величины по определению:

Часто для вычислений более удобна следующая формула дисперсии:

, (2)

где .

Пример 6. Дискретная случайная величина X может принимать только два значения. Меньшее значение она принимает с вероятностью p = 0,6 . Найти закон распределения дискретной случайной величины X , если известно, что её математическое ожидание и дисперсия .

Решение. Вероятность того, что случайная величина примет бОльшее значение x 2 , равна 1 − 0,6 = 4 . Используя формулу (1) математического ожидания, составим уравнение, в котором неизвестные - значения нашей дискретной случайной величины:

Используя формулу (2) дисперсии, составим другое уравнение, в котором неизвестные - также значения дискретной случайной величины:

Систему из двух полученных уравнений

решаем методом подстановки. Из первого уравнения получаем

Подставив это выражение во второе уравнение, после несложных преобразований получим квадратное уравнение

,

которое имеет два корня: 7/5 и −1 . Первый корень не отвечает условиям задачи, так как x 2 < x 1 . Таким образом, значения, которые может принимать дискретная случайная величина X по условиям нашего примера, равны x 1 = −1 и x 2 = 2 .

Определение 1

Случайная величина $Х$ называется дискретной (прерывной), если множество ее значений бесконечное или конечное, но счетное.

Другими словами, величина называется дискретной, если ее значения можно занумеровать.

Описать случайную величину можно с используя закона распределения.

Закон распределения дискретной случайной величины $Х$ может быть задан в виде таблицы, в первой строке которой указаны все возможные значения случайной величины в порядке возрастания, а во второй строке соответствующие вероятности этих значений:

Рисунок 1.

где $р1+ р2+ ... + рn = 1$.

Даная таблица является рядом распределения дискретной случайной величины .

Если множество возможных значений случайной величины бесконечно, то ряд $р1+ р2+ ... + рn+ ...$ сходится и его сумма будет равна $1$.

Закон распределения дискретной случайной величины $Х$ можно представить графически, для чего в системе координат (прямоугольной) строят ломаную линию, которая последовательно соединяет точки с координатами $(xi;pi), i=1,2, ... n$. Линию, которую получили называют многоугольником распределения .

Рисунок 2.

Закон распределения дискретной случайной величины $Х$ может быть также представлен аналитически (с помощью формулы):

$P(X=xi)= \varphi (xi),i =1,2,3 ... n$.

Действия над дискретными вероятностями

При решении многих задач теории вероятности необходимо проводить операции умножения дискретной случайной величины на константу , сложения двух случайных величин, их умножения, поднесения к степени. В этих случаях необходимо придерживаться таких правил над случайными дискретными величинами:

Определение 3

Умножением дискретной случайной величины $X$ на константу $K$ называется дискретная случайная величина $Y=KX,$ которая обусловлена равенствами: $y_i=Kx_i,\ \ p\left(y_i\right)=p\left(x_i\right)=p_i,\ \ i=\overline{1,\ n}.$

Определение 4

Две случайные величины $x$ и $y$ называются независимыми , если закон распределения одной из них не зависит от того, какие возможные значения приобрела вторая величина.

Определение 5

Суммой двух независимых дискретных случайных величин $X$ и $Y$ называют случайную величину $Z=X+Y,$ обусловлена равенствами: $z_{ij}=x_i+y_j$, $P\left(z_{ij}\right)=P\left(x_i\right)P\left(y_j\right)=p_ip"_j$, $i=\overline{1,n}$, $j=\overline{1,m}$, $P\left(x_i\right)=p_i$, $P\left(y_j\right)=p"_j$.

Определение 6

Умножением двух независимых дискретных случайных величин $X$ и $Y$ называют случайную величину $Z=XY,$ обусловлена равенствами: $z_{ij}=x_iy_j$, $P\left(z_{ij}\right)=P\left(x_i\right)P\left(y_j\right)=p_ip"_j$, $i=\overline{1,n}$, $j=\overline{1,m}$, $P\left(x_i\right)=p_i$, $P\left(y_j\right)=p"_j$.

Примем во внимание, что некоторые произведения $x_{i\ \ \ \ \ }y_j$ могут быть равными между собой. В таком случае вероятность сложения произведения равна сумме соответствующих вероятностей.

Например, если $x_2\ \ y_3=x_5\ \ y_7,\ $то вероятность $x_2y_3$ (или тоже самое $x_5y_7$) будет равна $p_2\cdot p"_3+p_5\cdot p"_7.$

Сказанное выше касается также и суммы. Если $x_1+\ y_2=x_4+\ \ y_6,$ то вероятность $x_1+\ y_2$ (или тоже самое $x_4+\ y_6$) будет равняться $p_1\cdot p"_2+p_4\cdot p"_6.$

Пусnm случайные величины $X$ и $Y$ заданы законами распределения:

Рисунок 3.

Где $p_1+p_2+p_3=1,\ \ \ p"_1+p"_2=1.$ Тогда закон распределения сумы $X+Y$ будет иметь вид

Рисунок 4.

А закон распределения произведения $XY$ будет иметь вид

Рисунок 5.

Фунция распределения

Полное описание случайной величины дает также функция распределения.

Геометрически функция распределения разъясняется как вероятность того, что случайная величина $Х$ принимает значение, которое на числовой прямой изображается точкой, лежащей с левой стороны от точки $х$.

Дан ряд распределения дискретной случайной величины. Найти недостающую вероятность и построить график функции распределения. Вычислить математическое ожидание и дисперсию этой величины.

Случайная величина Х принимает только четыре значения: -4, -3, 1 и 2. Каждое из этих значений она принимает с определенной вероятностью. Так как сумма всех вероятностей должна быть равна 1, то недостающая вероятность равна:

0,3 + ? + 0,1 + 0,4 = 1,

Составим функцию распределения случайной величины Х. Известно, что функция распределения , тогда:


Следовательно,

Построим график функции F (x ) .

Математическое ожидание дискретной случайной величины равно сумме произведений значения случайной величины на соответствующую вероятность, т.е.

Дисперсию дискретной случайной величины найдем по формуле:

ПРИЛОЖЕНИЕ

Элементы комбинаторики


Здесь: - факториал числа

Действия над событиями

Событие – это всякий факт, который может произойти или не произойти в результате опыта.

    Объединение событий А и В – это событие С , которое состоит в появлении или события А , или события В , или обоих событий одновременно.

Обозначение:
;

    Пересечение событий А и В – это событие С , которое состоит в одновременном появлении обоих событий.

Обозначение:
;

Классическое определение вероятности

Вероятность события А – это отношение числа опытов
, благоприятствующих появлению события А , к общему числу опытов
:

Формула умножения вероятностей

Вероятность события
можно найти по формуле:

- вероятность события А,

- вероятность события В,

- вероятность события В при условии, что событие А уже произошло.

Если события А и В – независимы (появление одного не влияет на появление другого), то вероятность события равна:

Формула сложения вероятностей

Вероятность события
можно найти по формуле:

Вероятность события А,

Вероятность события В,

- вероятность совместного появления событий А и В .

Если события А и В – несовместны (не могут появиться одновременно), то вероятность события равна:

Формула полной вероятности

Пусть событие А может произойти одновременно с одним из событий
,
, …,
- назовем их гипотезами. Также известны
- вероятность выполнения i -ой гипотезы и
- вероятность появления события А при выполнении i -ой гипотезы. Тогда вероятность события А может быть найдена по формуле:

Схема Бернулли

Пусть проводится n независимых испытаний. Вероятность появления (успеха) события А в каждом из них постоянна и равна p , вероятность неудачи (т.е. не появления события А ) q = 1 - p . Тогда вероятность появления k успехов в n испытаниях можно найти по формуле Бернулли:

Наивероятнейшее число успехов в схеме Бернулли – это число появлений некоторого события, которому соответствует наибольшая вероятность. Можно найти по формуле:

Случайные величины

дискретные непрерывные

(н-р, число девочек в семье с 5 детьми) (н-р, время исправной работы чайника)

Числовые характеристики дискретных случайных величин

Пусть дискретная величина задана рядом распределения:

Х

Р

, , …, - значения случайной величины Х ;

, , …, - соответствующие им значения вероятностей.

Функция распределения

Функцией распределения случайной величины Х называется функция , заданная на всей числовой прямой и равная вероятности того, что Х будет меньше х :

Вопросы к экзамену

    Событие. Операции над случайными событиями.

    Понятие вероятности события.

    Правила сложения и умножения вероятностей. Условные вероятности.

    Формула полной вероятности. Формула Байеса.

    Схема Бернулли.

    Случайная величина, ее функция распределения и ряд распределения.

    Основные свойства функции распределения.

    Математическое ожидание. Свойства математического ожидания.

    Дисперсия. Свойства дисперсии.

    Плотность распределения вероятностей одномерной случайной величины.

    Виды распределений: равномерное, экспоненциальное, нормальное, биномиальное и распределение Пуассона.

    Локальная и интегральные теоремы Муавра-Лапласа.

    Закон и функция распределения системы двух случайных величин.

    Плотность распределения системы двух случайных величин.

    Условные законы распределения, условное математическое ожидание.

    Зависимые и независимые случайные величины. Коэффициент корреляции.

    Выборка. Обработка выборки. Полигон и гистограмма частот. Эмпирическая функция распределения.

    Понятие оценки параметров распределения. Требования к оценке. Доверительный интервал. Построение интервалов для оценки математического ожидания и среднего квадратического отклонения.

    Статистические гипотезы. Критерии согласия.