Тангента как вычислить формулы. Cинус, косинус, тангенс и котангенс - все, что нужно знать на ЕГЭ по математике (2020). Тригонометрические функции углового и числового аргумента


В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов . Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

Навигация по странице.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2

Таблица значений тригонометрических функций

Примечание . В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби - символ "/".

См. также полезные материалы:

Для определения значения тригонометрической функции , найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.

Синус пи, косинус пи, тангенс пи и других углов в радианах

Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах . Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180 .

Примеры :
1. Синус пи .
sin π = sin 180 = 0
таким образом, синус пи - это тоже самое, что синус 180 градусов и он равен нулю.

2. Косинус пи .
cos π = cos 180 = -1
таким образом, косинус пи - это тоже самое, что косинус 180 градусов и он равен минус единице.

3. Тангенс пи
tg π = tg 180 = 0
таким образом, тангенс пи - это тоже самое, что тангенс 180 градусов и он равен нулю.

Таблица значений синуса, косинуса, тангенса для углов 0 - 360 градусов (часто встречающиеся значения)

значение угла α
(градусов)

значение угла α
в радианах

(через число пи)

sin
(синус)
cos
(косинус)
tg
(тангенс)
ctg
(котангенс)
sec
(секанс)
cosec
(косеканс)
0 0 0 1 0 - 1 -
15 π/12 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 -
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 0 1 0 - 1 -

Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет - клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов
0, 15, 30, 45, 60, 90 ... 360 градусов
(цифровые значения "как по таблицам Брадиса")

значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

В таблице значения тангенсов от 0° до 360°.

Таблица тангенсов нужна, когда у вас под рукой нет калькулятора. Чтобы узнать, чему равен тангенс угла, просто найдите его в таблице. Для начала короткая версия таблицы:

https://uchim.org/matematika/tablica-tangensov — uchim.org

Таблица тангенсов для 0°-180°

tg(1°) 0.0175
tg(2°) 0.0349
tg(3°) 0.0524
tg(4°) 0.0699
tg(5°) 0.0875
tg(6°) 0.1051
tg(7°) 0.1228
tg(8°) 0.1405
tg(9°) 0.1584
tg(10°) 0.1763
tg(11°) 0.1944
tg(12°) 0.2126
tg(13°) 0.2309
tg(14°) 0.2493
tg(15°) 0.2679
tg(16°) 0.2867
tg(17°) 0.3057
tg(18°) 0.3249
tg(19°) 0.3443
tg(20°) 0.364
tg(21°) 0.3839
tg(22°) 0.404
tg(23°) 0.4245
tg(24°) 0.4452
tg(25°) 0.4663
tg(26°) 0.4877
tg(27°) 0.5095
tg(28°) 0.5317
tg(29°) 0.5543
tg(30°) 0.5774
tg(31°) 0.6009
tg(32°) 0.6249
tg(33°) 0.6494
tg(34°) 0.6745
tg(35°) 0.7002
tg(36°) 0.7265
tg(37°) 0.7536
tg(38°) 0.7813
tg(39°) 0.8098
tg(40°) 0.8391
tg(41°) 0.8693
tg(42°) 0.9004
tg(43°) 0.9325
tg(44°) 0.9657
tg(45°) 1
tg(46°) 1.0355
tg(47°) 1.0724
tg(48°) 1.1106
tg(49°) 1.1504
tg(50°) 1.1918
tg(51°) 1.2349
tg(52°) 1.2799
tg(53°) 1.327
tg(54°) 1.3764
tg(55°) 1.4281
tg(56°) 1.4826
tg(57°) 1.5399
tg(58°) 1.6003
tg(59°) 1.6643
tg(60°) 1.7321
tg(61°) 1.804
tg(62°) 1.8807
tg(63°) 1.9626
tg(64°) 2.0503
tg(65°) 2.1445
tg(66°) 2.246
tg(67°) 2.3559
tg(68°) 2.4751
tg(69°) 2.6051
tg(70°) 2.7475
tg(71°) 2.9042
tg(72°) 3.0777
tg(73°) 3.2709
tg(74°) 3.4874
tg(75°) 3.7321
tg(76°) 4.0108
tg(77°) 4.3315
tg(78°) 4.7046
tg(79°) 5.1446
tg(80°) 5.6713
tg(81°) 6.3138
tg(82°) 7.1154
tg(83°) 8.1443
tg(84°) 9.5144
tg(85°) 11.4301
tg(86°) 14.3007
tg(87°) 19.0811
tg(88°) 28.6363
tg(89°) 57.29
tg(90°)
tg(91°) -57.29
tg(92°) -28.6363
tg(93°) -19.0811
tg(94°) -14.3007
tg(95°) -11.4301
tg(96°) -9.5144
tg(97°) -8.1443
tg(98°) -7.1154
tg(99°) -6.3138
tg(100°) -5.6713
tg(101°) -5.1446
tg(102°) -4.7046
tg(103°) -4.3315
tg(104°) -4.0108
tg(105°) -3.7321
tg(106°) -3.4874
tg(107°) -3.2709
tg(108°) -3.0777
tg(109°) -2.9042
tg(110°) -2.7475
tg(111°) -2.6051
tg(112°) -2.4751
tg(113°) -2.3559
tg(114°) -2.246
tg(115°) -2.1445
tg(116°) -2.0503
tg(117°) -1.9626
tg(118°) -1.8807
tg(119°) -1.804
tg(120°) -1.7321
tg(121°) -1.6643
tg(122°) -1.6003
tg(123°) -1.5399
tg(124°) -1.4826
tg(125°) -1.4281
tg(126°) -1.3764
tg(127°) -1.327
tg(128°) -1.2799
tg(129°) -1.2349
tg(130°) -1.1918
tg(131°) -1.1504
tg(132°) -1.1106
tg(133°) -1.0724
tg(134°) -1.0355
tg(135°) -1
tg(136°) -0.9657
tg(137°) -0.9325
tg(138°) -0.9004
tg(139°) -0.8693
tg(140°) -0.8391
tg(141°) -0.8098
tg(142°) -0.7813
tg(143°) -0.7536
tg(144°) -0.7265
tg(145°) -0.7002
tg(146°) -0.6745
tg(147°) -0.6494
tg(148°) -0.6249
tg(149°) -0.6009
tg(150°) -0.5774
tg(151°) -0.5543
tg(152°) -0.5317
tg(153°) -0.5095
tg(154°) -0.4877
tg(155°) -0.4663
tg(156°) -0.4452
tg(157°) -0.4245
tg(158°) -0.404
tg(159°) -0.3839
tg(160°) -0.364
tg(161°) -0.3443
tg(162°) -0.3249
tg(163°) -0.3057
tg(164°) -0.2867
tg(165°) -0.2679
tg(166°) -0.2493
tg(167°) -0.2309
tg(168°) -0.2126
tg(169°) -0.1944
tg(170°) -0.1763
tg(171°) -0.1584
tg(172°) -0.1405
tg(173°) -0.1228
tg(174°) -0.1051
tg(175°) -0.0875
tg(176°) -0.0699
tg(177°) -0.0524
tg(178°) -0.0349
tg(179°) -0.0175
tg(180°) -0

Таблица тангенсов для 180° — 360°

tg(181°) 0.0175
tg(182°) 0.0349
tg(183°) 0.0524
tg(184°) 0.0699
tg(185°) 0.0875
tg(186°) 0.1051
tg(187°) 0.1228
tg(188°) 0.1405
tg(189°) 0.1584
tg(190°) 0.1763
tg(191°) 0.1944
tg(192°) 0.2126
tg(193°) 0.2309
tg(194°) 0.2493
tg(195°) 0.2679
tg(196°) 0.2867
tg(197°) 0.3057
tg(198°) 0.3249
tg(199°) 0.3443
tg(200°) 0.364
tg(201°) 0.3839
tg(202°) 0.404
tg(203°) 0.4245
tg(204°) 0.4452
tg(205°) 0.4663
tg(206°) 0.4877
tg(207°) 0.5095
tg(208°) 0.5317
tg(209°) 0.5543
tg(210°) 0.5774
tg(211°) 0.6009
tg(212°) 0.6249
tg(213°) 0.6494
tg(214°) 0.6745
tg(215°) 0.7002
tg(216°) 0.7265
tg(217°) 0.7536
tg(218°) 0.7813
tg(219°) 0.8098
tg(220°) 0.8391
tg(221°) 0.8693
tg(222°) 0.9004
tg(223°) 0.9325
tg(224°) 0.9657
tg(225°) 1
tg(226°) 1.0355
tg(227°) 1.0724
tg(228°) 1.1106
tg(229°) 1.1504
tg(230°) 1.1918
tg(231°) 1.2349
tg(232°) 1.2799
tg(233°) 1.327
tg(234°) 1.3764
tg(235°) 1.4281
tg(236°) 1.4826
tg(237°) 1.5399
tg(238°) 1.6003
tg(239°) 1.6643
tg(240°) 1.7321
tg(241°) 1.804
tg(242°) 1.8807
tg(243°) 1.9626
tg(244°) 2.0503
tg(245°) 2.1445
tg(246°) 2.246
tg(247°) 2.3559
tg(248°) 2.4751
tg(249°) 2.6051
tg(250°) 2.7475
tg(251°) 2.9042
tg(252°) 3.0777
tg(253°) 3.2709
tg(254°) 3.4874
tg(255°) 3.7321
tg(256°) 4.0108
tg(257°) 4.3315
tg(258°) 4.7046
tg(259°) 5.1446
tg(260°) 5.6713
tg(261°) 6.3138
tg(262°) 7.1154
tg(263°) 8.1443
tg(264°) 9.5144
tg(265°) 11.4301
tg(266°) 14.3007
tg(267°) 19.0811
tg(268°) 28.6363
tg(269°) 57.29
tg(270°) — ∞
tg(271°) -57.29
tg(272°) -28.6363
tg(273°) -19.0811
tg(274°) -14.3007
tg(275°) -11.4301
tg(276°) -9.5144
tg(277°) -8.1443
tg(278°) -7.1154
tg(279°) -6.3138
tg(280°) -5.6713
tg(281°) -5.1446
tg(282°) -4.7046
tg(283°) -4.3315
tg(284°) -4.0108
tg(285°) -3.7321
tg(286°) -3.4874
tg(287°) -3.2709
tg(288°) -3.0777
tg(289°) -2.9042
tg(290°) -2.7475
tg(291°) -2.6051
tg(292°) -2.4751
tg(293°) -2.3559
tg(294°) -2.246
tg(295°) -2.1445
tg(296°) -2.0503
tg(297°) -1.9626
tg(298°) -1.8807
tg(299°) -1.804
tg(300°) -1.7321
tg(301°) -1.6643
tg(302°) -1.6003
tg(303°) -1.5399
tg(304°) -1.4826
tg(305°) -1.4281
tg(306°) -1.3764
tg(307°) -1.327
tg(308°) -1.2799
tg(309°) -1.2349
tg(310°) -1.1918
tg(311°) -1.1504
tg(312°) -1.1106
tg(313°) -1.0724
tg(314°) -1.0355
tg(315°) -1
tg(316°) -0.9657
tg(317°) -0.9325
tg(318°) -0.9004
tg(319°) -0.8693
tg(320°) -0.8391
tg(321°) -0.8098
tg(322°) -0.7813
tg(323°) -0.7536
tg(324°) -0.7265
tg(325°) -0.7002
tg(326°) -0.6745
tg(327°) -0.6494
tg(328°) -0.6249
tg(329°) -0.6009
tg(330°) -0.5774
tg(331°) -0.5543
tg(332°) -0.5317
tg(333°) -0.5095
tg(334°) -0.4877
tg(335°) -0.4663
tg(336°) -0.4452
tg(337°) -0.4245
tg(338°) -0.404
tg(339°) -0.3839
tg(340°) -0.364
tg(341°) -0.3443
tg(342°) -0.3249
tg(343°) -0.3057
tg(344°) -0.2867
tg(345°) -0.2679
tg(346°) -0.2493
tg(347°) -0.2309
tg(348°) -0.2126
tg(349°) -0.1944
tg(350°) -0.1763
tg(351°) -0.1584
tg(352°) -0.1405
tg(353°) -0.1228
tg(354°) -0.1051
tg(355°) -0.0875
tg(356°) -0.0699
tg(357°) -0.0524
tg(358°) -0.0349
tg(359°) -0.0175
tg(360°) -0

Существуют также следующие таблицы тригонометрических функций по геометрии: таблица синусов, таблица косинусов и таблица котангенсов.

Всё для учебы » Математика в школе » Таблица тангенсов углов (углы, значения)

Чтобы добавить страницу в закладки, нажмите Ctrl+D.

Группа с кучей полезной информации (подпишитесь, если предстоит ЕГЭ или ОГЭ):

Знаки тригонометрических функций

Знак тригонометрической функции зависит исключительно от координатной четверти, в которой располагается числовой аргумент.

В прошлый раз мы учились переводить аргументы из радианной меры в градусную (см. урок «Радианная и градусная мера угла»), а затем определять эту самую координатную четверть. Теперь займемся, собственно, определением знака синуса, косинуса и тангенса.

угла α - это ордината (координата y) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

угла α - это абсцисса (координата x) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

угла α - это отношение синуса к косинусу.

Или, что то же самое, отношение координаты y к координате x .

Обозначение: sin α = y ; cos α = x ; tg α = y: x .

Все эти определения знакомы вам из курса алгебры старших классов. Однако нас интересуют не сами определения, а следствия, которые возникают на тригонометрической окружности. Взгляните:

Синим цветом обозначено положительное направление оси OY (ось ординат), красным - положительное направление оси OX (ось абсцисс).

На этом «радаре» знаки тригонометрических функций становятся очевидными. В частности:

  1. sin α > 0, если угол α лежит в I или II координатной четверти. Это происходит из-за того, что по определению синус - это ордината(координата y).

    А координата y будет положительной именно в I и II координатных четвертях;

  2. cos α > 0, если угол α лежит в I или IV координатной четверти. Потому что только там координата x (она же - абсцисса) будет больше нуля;
  3. tg α > 0, если угол α лежит в I или III координатной четверти. Это следует из определения: ведь tg α = y: x , поэтому он положителен лишь там, где знаки x и y совпадают.

    Это происходит в I координатной четверти (здесь x > 0, y > 0) и III координатной четверти (x < 0, y < 0).

Для наглядности отметим знаки каждой тригонометрической функции - синуса, косинуса и тангенса - на отдельных «радарах». Получим следующую картинку:

Заметьте: в своих рассуждениях я ни разу не говорил о четвертой тригонометрической функции - котангенсе.

Дело в том, что знаки котангенса совпадают со знаками тангенса - никаких специальных правил там нет.

Теперь предлагаю рассмотреть примеры, похожие на задачи B11 из пробного ЕГЭ по математике, который проходил 27 сентября 2011. Ведь лучший способ понять теорию - это практика. Желательно - много практики. Разумеется, условия задач были немного изменены.

Задача. Определите знаки тригонометрических функций и выражений (значения самих функций считать не надо):

  1. sin (3π/4);
  2. cos (7π/6);
  3. tg (5π/3);
  4. sin (3π/4) · cos (5π/6);
  5. cos (2π/3) · tg (π/4);
  6. sin (5π/6) · cos (7π/4);
  7. tg (3π/4) · cos (5π/3);
  8. ctg (4π/3) · tg (π/6).

План действий такой: сначала переводим все углы из радианной меры в градусную (π → 180°), а затем смотрим в какой координатной четверти лежит полученное число.

Зная четверти, мы легко найдем знаки - по только что описанным правилам. Имеем:

  1. sin (3π/4) = sin (3 · 180°/4) = sin 135°. Поскольку 135° ∈ , это угол из II координатной четверти. Но синус во II четверти положителен, поэтому sin (3π/4) > 0;
  2. cos (7π/6) = cos (7 · 180°/6) = cos 210°. Т.к. 210° ∈ , это угол из III координатной четверти, в которой все косинусы отрицательны.

    Следовательно, cos (7π/6) < 0;

  3. tg (5π/3) = tg (5 · 180°/3) = tg 300°. Поскольку 300° ∈ , мы находимся в IV четверти, где тангенс принимает отрицательные значения. Поэтому tg (5π/3) < 0;
  4. sin (3π/4) · cos (5π/6) = sin (3 · 180°/4) · cos (5 · 180°/6) = sin 135° · cos 150°. Разберемся с синусом: т.к. 135° ∈ , это II четверть, в которой синусы положительны, т.е.

    sin (3π/4) > 0. Теперь работаем с косинусом: 150° ∈ - снова II четверть, косинусы там отрицательны. Поэтому cos (5π/6) < 0. Наконец, следуя правилу «плюс на минус дает знак минус», получаем: sin (3π/4) · cos (5π/6) < 0;

  5. cos (2π/3) · tg (π/4) = cos (2 · 180°/3) · tg (180°/4) = cos 120° · tg 45°. Смотрим на косинус: 120° ∈ - это II координатная четверть, поэтому cos (2π/3) < 0. Смотрим на тангенс: 45° ∈ - это I четверть (самый обычный угол в тригонометрии).

    Тангенс там положителен, поэтому tg (π/4) > 0. Опять получили произведение, в котором множители разных знаков. Поскольку «минус на плюс дает минус», имеем: cos (2π/3) · tg (π/4) < 0;

  6. sin (5π/6) · cos (7π/4) = sin (5 · 180°/6) · cos (7 · 180°/4) = sin 150° · cos 315°. Работаем с синусом: поскольку 150° ∈ , речь идет о II координатной четверти, где синусы положительны.

    Следовательно, sin (5π/6) > 0. Аналогично, 315° ∈ - это IV координатная четверть, косинусы там положительны.

    Поэтому cos (7π/4) > 0. Получили произведение двух положительных чисел - такое выражение всегда положительно. Заключаем: sin (5π/6) · cos (7π/4) > 0;

  7. tg (3π/4) · cos (5π/3) = tg (3 · 180°/4) · cos (5 · 180°/3) = tg 135° · cos 300°.

    Но угол 135° ∈ - это II четверть, т.е. tg (3π/4) < 0. Аналогично, угол 300° ∈ - это IV четверть, т.е. cos (5π/3) > 0.

    Поскольку «минус на плюс дает знак минус», имеем: tg (3π/4) · cos (5π/3) < 0;

  8. ctg (4π/3) · tg (π/6) = ctg (4 · 180°/3) · tg (180°/6) = ctg 240° · tg 30°. Смотрим на аргумент котангенса: 240° ∈ - это III координатная четверть, поэтому ctg (4π/3) > 0. Аналогично, для тангенса имеем: 30° ∈ - это I координатная четверть, т.е. самый простой угол. Поэтому tg (π/6) > 0. Снова получили два положительных выражения - их произведение тоже будет положительным.

    Поэтому ctg (4π/3) · tg (π/6) > 0.

В заключение рассмотрим несколько более сложных задач. Помимо выяснения знака тригонометрической функции, здесь придется немного посчитать - именно так, как это делается в настоящих задачах B11. В принципе, это почти настоящие задачи, которые действительно встречается в ЕГЭ по математике.

Найдите sin α, если sin2 α = 0,64 и α ∈ [π/2; π].

Поскольку sin2 α = 0,64, имеем: sin α = ±0,8.

Осталось решить: плюс или минус? По условию, угол α ∈ [π/2; π] - это II координатная четверть, где все синусы положительны. Следовательно, sin α = 0,8 - неопределенность со знаками устранена.

Задача. Найдите cos α, если cos2 α = 0,04 и α ∈ [π; 3π/2].

Действуем аналогично, т.е.

извлекаем квадратный корень: cos2 α = 0,04 ⇒ cos α = ±0,2. По условию, угол α ∈ [π; 3π/2], т.е. речь идет о III координатной четверти. Там все косинусы отрицательны, поэтому cos α = −0,2.

Задача. Найдите sin α, если sin2 α = 0,25 и α ∈ .

Имеем: sin2 α = 0,25 ⇒ sin α = ±0,5.

Тригонометрические функции любого угла

Снова смотрим на угол: α ∈ - это IV координатная четверть, в которой, как известно, синус будет отрицательным. Таким образом, заключаем: sin α = −0,5.

Задача. Найдите tg α, если tg2 α = 9 и α ∈ .

Все то же самое, только для тангенса.

Извлекаем квадратный корень: tg2 α = 9 ⇒ tg α = ±3. Но по условию угол α ∈ - это I координатная четверть. Все тригонометрические функции, в т.ч. тангенс, там положительны, поэтому tg α = 3. Все!

Для решения некоторых задач будет полезной таблица тригонометрических тождеств, которая позволит гораздо проще совершать преобразования функций:

Простейшие тригонометрические тождества

Частное от деления синуса угла альфа на косинус того же угла равно тангенсу этого угла (Формула 1). См. также доказательство правильности преобразования простейших тригонометрических тождеств .
Частное от деления косинуса угла альфа на синус того же угла равно котангенсу этого же угла (Формула 2)
Секанс угла равен единице, деленной на косинус этого же самого угла (Формула 3)
Сумма квадратов синуса и косинуса одного и того же угла равна единице (Формула 4). см. также доказательство суммы квадратов косинуса и синуса .
Сумма единицы и тангенса угла равна отношению единицы к квадрату косинуса этого угла (Формула 5)
Единица плюс котангенс угла равна частному от деления единицы на синус квадрат этого угла (Формула 6)
Произведение тангенса на котангенс одного и того же угла равно единице (Формула 7).

Преобразование отрицательных углов тригонометрических функций (четность и нечетность)

Для того, чтобы избавиться от отрицательного значения градусной меры угла при вычислении синуса, косинуса или тангенса, можно воспользоваться следующими тригонометрическими преобразованиями (тождествами), основанными на принципах четности или нечетности тригонометрических функций.


Как видно, косинус и секанс является четной функцией , синус, тангенс и котангенс - нечетные функции .

Синус отрицательного угла равен отрицательному значению синуса этого же самого положительного угла (минус синус альфа).
Косинус "минус альфа" даст тоже самое значение, что и косинус угла альфа.
Тангенс минус альфа равен минус тангенс альфа.

Формулы приведения двойного угла (синус, косинус, тангенс и котангенс двойного угла)

Если необходимо разделить угол пополам, или наоборот, перейти от двойного угла к одинарному, можно воспользоваться следующими тригонометрическими тождествами:


Преобразование двойного угла (синуса двойного угла, косинуса двойного угла и тангенса двойного угла ) в одинарный происходит по следующим правилам:

Синус двойного угла равен удвоенному произведению синуса на косинус одинарного угла

Косинус двойного угла равен разности квадрата косинуса одинарного угла и квадрата синуса этого угла

Косинус двойного угла равен удвоенному квадрату косинуса одинарного угла минус единица

Косинус двойного угла равен единице минус двойной синус квадрат одинарного угла

Тангенс двойного угла равен дроби, числитель которой - удвоенный тангенс одинарного угла, а знаменатель равен единице минус тангенс квадрат одинарного угла.

Котангенс двойного угла равен дроби, числитель которой - квадрат котангенса одинарного угла минус единица, а знаменатель равен удвоенному котангенсу одинарного угла

Формулы универсальной тригонометрической подстановки

Указанные ниже формулы преобразования могут пригодиться, когда нужно аргумент тригонометрической функции (sin α, cos α, tg α) разделить на два и привести выражение к значению половины угла. Из значения α получаем α/2 .

Данные формулы называются формулами универсальной тригонометрической подстановки . Их ценность заключается в том, что тригонометрическое выражение с их помощью сводится к выражению тангенса половины угла, вне зависимости от того, какие тригонометрические функции (sin cos tg ctg) были в выражении изначально. После этого уравнение с тангенсом половины угла решить гораздо проще.

Тригонометрические тождества преобразования половины угла

Указанные ниже формулы тригонометрического преобразования половинной величины угла к его целому значению.
Значение аргумента тригонометрической функции α/2 приводится к значению аргумента тригонометрической функции α.

Тригонометрические формулы сложения углов

cos (α - β) = cos α · cos β + sin α · sin β

sin (α + β) = sin α · cos β + sin β · cos α

sin (α - β) = sin α · cos β - sin β · cos α
cos (α + β) = cos α · cos β - sin α · sin β

Тангенс и котангенс суммы углов альфа и бета могут быть преобразованы по следующим правилам преобразования тригонометрических функций:

Тангенс суммы углов равен дроби, числитель которой - сумма тангенса первого и тангенса второго угла, а знаменатель - единица минус произведение тангенса первого угла на тангенс второго угла.

Тангенс разности углов равен дроби, числитель которой равен разности тангенса уменьшаемого угла и тангенса вычитаемого угла, а знаменатель - единице плюс произведение тангенсов этих углов.

Котангенс суммы углов равен дроби, числитель которой равен произведению котангенсов этих углов плюс единица, а знаменатель равен разности котангенса второго угла и котангенса первого угла.

Котангенс разности углов равен дроби, числитель которой - произведение котангенсов этих углов минус единица, а знаменатель равен сумме котангенсов этих углов.

Данные тригонометрические тождества удобно применять, когда нужно вычислить, например, тангенс 105 градусов (tg 105). Если его представить как tg (45 + 60), то можно воспользоваться приведенными тождественными преобразованиями тангенса суммы углов, после чего просто подставить табличные значения тангенса 45 и тангенса 60 градусов.

Формулы преобразования суммы или разности тригонометрических функций

Выражения, представляющие собой сумму вида sin α + sin β можно преобразовать с помощью следующих формул:

Формулы тройного угла - преобразование sin3α cos3α tg3α в sinα cosα tgα

Иногда необходимо преобразовать тройную величину угла так, чтобы аргументом тригонометрической функции вместо 3α стал угол α.
В этом случае можно воспользоваться формулами (тождествами) преобразования тройного угла:

Формулы преобразования произведения тригонометрических функций

Если возникает необходимость преобразовать произведение синусов разных углов косинусов разных углов или даже произведения синуса на косинус, то можно воспользоваться следующими тригонометрическими тождествами:


В этом случае произведение функций синуса, косинуса или тангенса разных углов будет преобразовано в сумму или разность.

Формулы приведения тригонометрических функций

Пользоваться таблицей приведения нужно следующим образом. В строке выбираем функцию, которая нас интересует. В столбце - угол. Например, синус угла (α+90) на пересечении первой строки и первого столбца выясняем, что sin (α+90) = cos α .