Коэффициент детерминации статистика формула. Расчет коэффициента детерминации в Microsoft Excel

Как уж ранее отмечалось, в случае линейной регрессии основными показателями качества построенного уравнения регрессии служат коэффициент детерминации и критерий Фишера. Использование этих показателей обосновывается в теории дисперсионного анализа. Здесь рассматриваются следующие суммы:

· – общая сумма квадратов отклонений зависимой переменной от средней (TSS );

· – сумма квадратов, обусловленная регрессией (RSS );

· – сумма квадратов, характеризующая влияние неучтенных факторов (ESS ).

Напомним, что для моделей, линейных относительно параметров, выполняется следующее равенство

Исходя из этого равенства, вводился коэффициент детерминации

. (6.22)

В силу определения R 2 принимает значения между 0 и 1, . Чем ближе R 2 к единице, тем лучше регрессия аппроксимирует эмпирические данные , тем теснее наблюдения примыкают к линии регрессии. Если R 2 =1, то эмпирические точки (x i ,y i) лежат на линии регрессии и между переменными Y и X существует функциональная зависимость . Если R 2 =0, то вариация зависимой переменной полностью обусловлена воздействием неучтённых в модели переменных . Величина R 2 показывает, какая часть (доля) вариации зависимой переменной обусловлена вариацией объясняющей переменной .

Однако для моделей, нелинейных относительно параметров, равенство (6.21) не выполняется , т.е. . В связи с этим может получиться, что или . Это означает, что коэффициент детерминации, определяемый по формулам (6.22), может быть больше единицы или меньше нуля. Следовательно, R 2 для нелинейных моделей не является вполне адекватной характеристикой качества построенного уравнения регрессии.

На практике обычно в качестве коэффициента детерминации принимается величина

Эта величина имеет тот же самый смысл, что и для линейной модели, но при его использовании нужно учитывать все рассмотренные выше оговорки.

Замечание. Величину R 2 для нелинейных моделей иногда называют индексом детерминации , корень из данной величины R называют индексом корреляции.

Если после преобразования нелинейное уравнение регрессии принимает форму линейного парного уравнения регрессии, то для оценки тесноты связи может быть использован линейный коэффициент корреляции , где z – преобразованная величина независимой переменной, например z =1/x или z =lnx .



Иначе обстоит дело, когда преобразования уравнения в линейную форму связаны с результативным признаком. В этом случае линейный коэффициент корреляции по преобразованным значениям даёт лишь приближённую оценку тесноты связи и численно не совпадает с индексом корреляции.

Вследствие близости результатов и простоты расчётов с использованием компьютерных программ для характеристики тесноты связи по нелинейным функциям широко используется линейный коэффициент корреляции ( или ). Несмотря на близость значений R yx и или R yx и , следует помнить, что эти значения не совпадают. Это связано с тем, что для нелинейной регрессии , в отличие от линейной регрессии .

Коэффициент детерминации можно сравнивать с квадратом коэффициента корреляции для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина меньше . Близость этих показателей означает, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию. Практически, если величина ( – ) не превышает 0,1, то предположение о линейной форме связи считается оправданным. В противном случае проводится оценка существенности различия этих показателей, вычисленных по одним и тем же исходным данным.

Коэффициент детерминации можно использовать при сравнении двух альтернативных уравнений регрессии. Можно выбрать наилучшую из них по максимальному значению коэффициента детерминации. При рассмотрении альтернативных моделей с одним и тем же определением зависимой переменной предложенный способ выбора достаточно проста и очевидна. Однако нельзя сравнивать, например, линейную и логарифмические модели. Значения lnY значительно меньше соответствующих значений Y , поэтому неудивительно, что остатки также значительно меньше, но это ничего не решает. Величина R 2 безразмерна, однако в двух уравнениях она относится к разным понятиям. В одном уравнении она измеряет объясненную регрессией долю дисперсии Y , а в другом – объясненную регрессией долю дисперсии lnY . Если для одной модели коэффициент R 2 значительно больше, чем для другой, то можно сделать оправданный выбор без особых раздумий, однако, если значения R 2 для двух моделей приблизительно равны, то проблема выбора существенно усложняется.

Более подробно проблемы спецификации рассматриваются в дополнении 3.

Отметим, что критерий Фишера можно применять только для нормальной линейной классической регрессионной модели . Однако в общем случае, в первую для моделей нелинейных по параметрам, критерий Фишера применять нельзя! Иногда критерий Фишера применяют для линеаризованных моделей, однако здесь следует помнить, что исходное и линеаризованное уравнения не одно и то же, т.е. здесь нужны серьезные оговорки.

Более подробно использования критерия Фишера для линеаризированных моделей смотрите в дополнении 2.

ПРИМЕРЫ

Пример 6.1. Вычислить полулогарифмическую функцию регрессии зависимости доли расходов на товары длительного пользования в общих расходах семьи (Y , %) от среднемесячного дохода семьи (X , тыс. $ ):

X
Y 13,4 15,4 16,5 18,6 19,3

Решение. Используем стандартные процедуры линейного регрессионного анализа. Для расчетов воспользуемся данными таблицы 6.1:

Табл. 6.1.

x u= lnx y uy u 2 y 2 A
9,88 0,12 1,241 0,0154
0,693 13,4 9,29 0,48 179,56 13,43 -0,03 0,232 0,0010
1,099 15,4 16,92 1,21 237,16 15,51 -0,11 0,718 0,0122
1,386 16,5 22,87 1,92 272,25 16,99 -0,49 2,946 0,2363
1,609 18,6 29,94 2,59 345,96 18,13 0,47 2,524 0,2203
1,792 19,1 34,22 3,21 364,81 19,07 0,03 0,180 0,0012
Итого 6,579 113,24 9,41 1499,74 7,840 0,4864
Среднее значение 3,5 1,097 15,5 18,87 1,57 249,96 1,307

В соответствии с формулами (6.103) вычисляем

, .

В результате, получим уравнение полулогарифмической регрессии:

Подставляя в уравнение (6.24) фактические значения x i , получаем теоретические значения результата . Используя программу Excel ,

ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,9958
R -квадрат 0,9916
Нормированный R -квадрат 0,9896
Стандартная ошибка 0,3487
Наблюдения
ДИСПЕРСИОННЫЙ АНАЛИЗ
df SS MS F Значимость F
Регрессия 57,75 57,75 474,93 0,000026
Остаток 0,49 0,12
Итого 58,24
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y -пересечение 9,8759 0,2947 33,51 0,0000047 9,0576 10,6942
Переменная lnX 5,1289 0,2353 21,79 0,0000262 4,4755 5,7823

Из этих данных видно, в частности, что все коэффициенты регрессии статистически значимы. Оценим качество уравнения регрессии. Рассчитаем среднюю ошибку аппроксимации

,

т.е. с точки зрения этого показателя уравнение регрессии подобрано очень хорошо.

Вычислим теперь средний коэффициент эластичности

Таким образом, при возрастании среднемесячного дохода семьи на 1% доля расходов на товары длительного пользования в общих расходах семьи возрастет на 0,25% .

Коэффициент детерминации для данной модели совпадает с квадратом коэффициента корреляции . По данным таблицы 6.3 получаем

И .

Коэффициент детерминации показывает, что уравнение регрессии на 99% объясняет вариацию значений признака y , т.е. с точки зрения коэффициента детерминации построенное уравнение регрессии очень хорошо описывает исходные данные.

Для оценки качества данной модели можно использовать критерий Фишера (при предположении, что мы имеем дело с нормальной классической линейной моделью). В этом случае получаем

, .

Поскольку F набл >F крит , то гипотеза о случайной природе оцениваемых параметров отклоняется и признается их статистическая значимость и надежность, т.е. построенное уравнение регрессии признается статистически значимым. â

Пример 6.2. Имеются данные о просроченной задолженности по заработной плате за 9 месяцев 2000 г. по Санкт-Петербургу.

. Оцените качество построенной регрессии. б) Оцените МНК коэффициенты обратной модели , линеаризуя модель. Оцените качество построенной регрессии. в) Оцените МНК коэффициенты обратной модели , используя численные методы (метод Маркуардта)? г) Проанализируйте полученные результаты.

Решение. а) Используя стандартные процедуры линейного регрессионного анализа (считая, как обычно, t =1 для января 2000 г.), получим:

ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,846
R -квадрат 0,716
Нормированный R -квадрат 0,675
Стандартная ошибка 12,233
Наблюдения
ДИСПЕРСИОННЫЙ АНАЛИЗ
df SS MS F Значимость F
Регрессия 2640,07 2640,07 17,64 0,00403
Остаток 1047,58 149,65
Итого 3687,64
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересечение 410,12 8,89 46,15 5,87E-10 389,11 431,14
Переменная X 1 -6,63 1,58 -4,20 4,03E-03 -10,37 -2,90

,



причём все коэффициенты регрессии значимы. Коэффициент детерминации равен , т.е. линейная модель удовлетворительно описывает исходные данные. На графике поле корреляции и линейное уравнение регрессии будут выглядеть следующим образом:

В соответствии с построенным уравнением просроченная задолженность по заработной плате за 9 месяцев 2000 г. ежемесячно снижалась на 6,6 млн. руб. Расчётное значение просроченной задолженности за декабрь 1999 г. составило 410,1 млн. руб. Точечный прогноз за октябрь составила: млн. руб.

Оценим точность прогноза. В соответствии с линейным регрессионным анализом, находим предельную ошибку индивидуального прогноза (на уровне значимости a=0,05):

.

Точность прогноза составила .

б) Линеаризуем модель, полагая v =1/y . Составляем расчётную таблицу.

Месяцы t y v= 1/y tv t 2 v 2
Январь 387,6 0,00258 0,0026 0,0000067 0,00247 0,0001134 0,00000001286
Февраль 399,9 0,00250 0,0050 0,0000063 0,00252 -0,0000145 0,00000000021
Март 404,0 0,00248 0,0074 0,0000061 0,00256 -0,0000885 0,00000000783
Апрель 383,1 0,00261 0,0104 0,0000068 0,00261 -0,0000020 0,00000000000
Май 376,9 0,00265 0,0133 0,0000070 0,00266 -0,0000076 0,00000000006
Июнь 377,7 0,00265 0,0159 0,0000070 0,00271 -0,0000618 0,00000000382
Июль 358,1 0,00279 0,0195 0,0000078 0,00276 0,0000345 0,00000000119
Август 371,9 0,00269 0,0215 0,0000072 0,00281 -0,0001177 0,00000001385
Сентябрь 333,4 0,00300 0,0270 0,0000090 0,00286 0,0001442 0,00000002081
Итого: 3392,6 0,02395 0,1227 0,0000639 0,02395 0,00000006063
Среднее 376,96 0,002661 0,0136 31,67 0,0000071

Вычисляем

В результате, получим уравнение обратной регрессии:

.

Используя программу Excel получим следующие данные (на уровне значимости a=0,05):

ДИСПЕРСИОННЫЙ АНАЛИЗ
df SS MS F Значимость F
Регрессия 1,41557E-07 1,41557E-07 16,34 0,00492
Остаток 6,06323E-08 8,66176E-09
Итого 2,02189E-07
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y -пересечение 0,002418 6,76E-05 35,76 3,47E-09 0,00226 0,00258
Переменная lnX 0,0000486 1,20E-05 4,04 0,00492 2,02E-05 7,70E-05

R 2 =0,7). Этот вывод подтверждается и с точки зрения критерия Фишера (отметим, что для линеаризованных моделей, при определённых оговорках, можно применить критерий Фишера). Однако в рассматриваемом случае МНК применялся не к y , а к обратным значениям 1/y

t y A
387,6 405,42 -17,821 317,58 113,30 810,26 4,60
399,9 397,59 2,309 5,33 526,45 425,83 0,58
404,0 390,06 13,942 194,37 731,40 171,68 3,45
383,1 382,81 0,294 0,09 37,75 34,22 0,08
376,9 375,82 1,082 1,17 0,00 1,29 0,29
377,7 369,08 8,620 74,30 0,55 62,02 2,28
358,1 362,58 -4,480 20,07 355,53 206,64 1,25
371,9 356,31 15,595 243,19 25,56 426,43 4,19
333,4 350,24 -16,844 283,71 1897,09 713,52 5,05
3392,6 2,696 1139,81 3687,64 2851,90 21,77
376,96 2,42

.

Отметим, что для нелинейных моделей, оцененных МНК, эта сумма всегда равна нулю. Следовательно, оценки исходной нелинейной модели будут смещёнными .

Отсюда, в частности, следует, что равенство не выполняется. Действительно,

В связи с этим, для коэффициента детерминации можно получить два разных значения:

, или .

Это означает, что коэффициент детерминации для нелинейных моделей не всегда является адекватной характеристикой. Отметим, что в компьютерных программах для вычисления коэффициента детерминации в основном используют второе равенство.

Сделаем прогноз по полученному уравнению обратной модели и оценим его точность. Точечный прогноз за октябрь составит:

Млн. руб.

Оценим точность прогноза. В соответствии с линейным регрессионным анализом, находим предельную ошибку индивидуального прогноза по линеаризированному уравнению (на уровне значимости a=0,05):

В результате, доверительный интервал для прогнозного значения будет иметь вид

Точность прогноза для преобразованной переменной v составляет 9,4%. Однако мы имеем дело нес обратными величинами v =1/y , а с y . Переходя к исходной переменной, получим следующий доверительный интервал

.

Точность прогноза для непреобразованной переменной y составляет уже 18,9%. Этот результат показывает, что исходное и преобразованное уравнения дают, вообще говоря, разный результат.

в) Оценим МНК коэффициенты обратной модели

,

используя численные методы (метод Левенберга-Маркуардта). Для этого воспользуемся программой STATISTIKA. Программа выдаёт следующие результаты.

Уравнение регрессии имеет вид

с коэффициентом детерминации R 2 =0,6947. Для сравнений приведем результаты вычислений.

Видно, что численные методы дают вполне удовлетворительный результат. Более того, они позволяют провести также и некоторый статистический анализ полученной модели (хотя и не такой полный по-сравнению с линейными моделями). Таким образом, как показывает данный пример, линеаризация не всегда даёт более лучший результат по-сравнению с численными методами.

г) Сделаем некоторые выводы. Отметим, что коэффициенты детерминации для обеих моделей (линейной и обратной) практически не отличаются друг от друга: R 2 =0,716 для линейной модели и R 2 =0,691 для обратной модели. Поэтому обе модели с точки зрения коэффициента детерминации равноценны. Однако при оценке точности прогноза лучше использовать, как мы видели, линейную модель. Таким образом, использование обратной модели для интерпретации имеющихся результатов не совсем оправдано. С точки зрения статистических свойств в данном случае лучше использовать линейную модель. â

Пример 6.3. Имеются данные о зависимости расхода топлива (Y , г /на т·км ) от мощности двигателя грузовых автомобилей общего назначения (X , л.с. ):

X
Y

а) Оцените МНК коэффициенты линейной модели . Оцените качество построенной регрессии. б) Оцените МНК коэффициенты степенной модели , линеаризуя модель. Оцените качество построенной регрессии.

Решение. а) Используя стандартные процедуры линейного регрессионного анализа, получим:

ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,8378
R -квадрат 0,7019
Нормированный R -квадрат 0,6688
Стандартная ошибка 12,8383
Наблюдения
ДИСПЕРСИОННЫЙ АНАЛИЗ
df SS MS F Значимость F
Регрессия 3493,3 3493,3 21,19 0,001284
Остаток 1483,4 164,8
Итого 4976,7
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересечение 103,866 9,993 10,39 0,0000 81,261 126,471
Переменная X -0,3388 0,0736 -4,60 0,0013 -0,5053 -0,1723

Таким образом, линейное уравнение регрессии будет иметь вид

,

причём все коэффициенты регрессии значимы. Коэффициент детерминации равен , т.е. линейная модель удовлетворительно описывает исходные данные.

На графике поле корреляции и линейное уравнение регрессии будут выглядеть следующим образом:

4,248 4,477 19,022 18,050 20,047 4,4714 0,0059 0,00003 4,248 4,431 18,824 18,050 19,632 4,4714 -0,0406 0,00165 4,317 4,477 19,331 18,641 20,047 4,4119 0,0655 0,00429 4,443 4,331 19,240 19,737 18,755 4,3038 0,0270 0,00073 4,575 4,263 19,501 20,928 18,170 4,1897 0,0730 0,00533 4,745 3,951 18,748 22,514 15,612 4,0427 -0,0914 0,00836 4,787 3,951 18,917 22,920 15,612 4,0059 -0,0547 0,00299 5,011 3,829 19,184 25,106 14,658 3,8132 0,0154 0,00024 5,165 4,143 21,398 26,675 17,166

Используя программу Excel получим следующие данные (на уровне значимости a=0,05):

ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,8233
R -квадрат 0,6778
Нормированный R -квадрат 0,6420
Стандартная ошибка 0,2653
Наблюдения
ДИСПЕРСИОННЫЙ АНАЛИЗ
df SS MS F Значимость F
Регрессия 1,3327 1,3327 18,93 0,001847
Остаток 0,6336 0,0704
Итого 1,9663
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y -пересечение 8,141 0,946 8,609 0,0000123 6,002 10,280
Переменная lnX -0,864 0,198 -4,351 0,0018473 -1,313 -0,415

Качество линеаризованного уравнения довольно высокое (R 2 =0,678). Этот вывод подтверждается и с точки зрения критерия Фишера (напомним, что для линеаризованных моделей, при определённых оговорках, можно применить критерий Фишера). Однако в рассматриваемом случае МНК применялся не к y , а к их логарифмам lny , а это существенная разница. Проанализируем исходную, нелинеаризированную, модель.

45,295 -0,705 0,50 89,39 261,13 1,56 39,649 -23,351 545,29 89,39 475,50 58,90 38,696 17,696 313,13 1636,57 517,97 45,73 30,182 -4,818 23,21 699,84 977,95 15,96 -12,909 988,03 5038,18 4267,39 157,85 125,18 61,45 14,35

Из таблицы видно, что для данной модели

.

Следовательно, оценки исходной нелинейной модели будут смещёнными.

Для коэффициента детерминации можно получить два разных значения:

, или .

Это означает, что полученное уравнение достаточно хорошо описывает исходные данные и этот коэффициент выше, чем для коэффициента детерминации линейной регрессии. Хотя средний коэффициент аппроксимации не очень низкий .

Сделаем прогноз по полученному уравнению степенной модели и оценим его точность. При мощности двигателя x =70 л.с. расход топлива на 1 т-км составит

Одним из показателей, описывающих качество построенной модели в статистике, является коэффициент детерминации (R^2), который ещё называют величиной достоверности аппроксимации. С его помощью можно определить уровень точности прогноза. Давайте узнаем, как можно произвести расчет данного показателя с помощью различных инструментов программы Excel.

В зависимости от уровня коэффициента детерминации, принято разделять модели на три группы:

  • 0,8 – 1 — модель хорошего качества;
  • 0,5 – 0,8 — модель приемлемого качества;
  • 0 – 0,5 — модель плохого качества.

В последнем случае качество модели говорит о невозможности её использования для прогноза.

Выбор способа вычисления указанного значения в Excel зависит от того, является ли регрессия линейной или нет. В первом случае можно использовать функцию КВПИРСОН , а во втором придется воспользоваться специальным инструментом из пакета анализа.

Способ 1: вычисление коэффициента детерминации при линейной функции

Прежде всего, выясним, как найти коэффициент детерминации при линейной функции. В этом случае данный показатель будет равняться квадрату коэффициента корреляции. Произведем его расчет с помощью встроенной функции Excel на примере конкретной таблицы, которая приведена ниже.


Способ 2: вычисление коэффициента детерминации в нелинейных функциях

Но указанный выше вариант расчета искомого значения можно применять только к линейным функциям. Что же делать, чтобы произвести его расчет в нелинейной функции? В Экселе имеется и такая возможность. Её можно осуществить с помощью инструмента «Регрессия» , который является составной частью пакета «Анализ данных» .

  1. Но прежде, чем воспользоваться указанным инструментом, следует активировать сам «Пакет анализа» , который по умолчанию в Экселе отключен. Перемещаемся во вкладку «Файл» , а затем переходим по пункту «Параметры» .
  2. В открывшемся окне производим перемещение в раздел «Надстройки» при помощи навигации по левому вертикальному меню. В нижней части правой области окна располагается поле «Управление» . Из списка доступных там подразделов выбираем наименование «Надстройки Excel…» , а затем щелкаем по кнопке «Перейти…» , расположенной справа от поля.
  3. Производится запуск окна надстроек. В центральной его части расположен список доступных надстроек. Устанавливаем флажок около позиции «Пакет анализа» . Вслед за этим требуется щелкнуть по кнопке «OK» в правой части интерфейса окна.
  4. Пакет инструментов «Анализ данных» в текущем экземпляре Excel будет активирован. Доступ к нему располагается на ленте во вкладке «Данные» . Перемещаемся в указанную вкладку и клацаем по кнопке «Анализ данных» в группе настроек «Анализ» .
  5. Активируется окошко «Анализ данных» со списком профильных инструментов обработки информации. Выделяем из этого перечня пункт «Регрессия» и клацаем по кнопке «OK» .
  6. Затем открывается окно инструмента «Регрессия» . Первый блок настроек – «Входные данные» . Тут в двух полях нужно указать адреса диапазонов, где находятся значения аргумента и функции. Ставим курсор в поле «Входной интервал Y» и выделяем на листе содержимое колонки «Y» . После того, как адрес массива отобразился в окне «Регрессия» , ставим курсор в поле «Входной интервал Y» и точно таким же образом выделяем ячейки столбца «X» .

    Около параметров «Метка» и «Константа-ноль» флажки не ставим. Флажок можно установить около параметра «Уровень надежности» и в поле напротив указать желаемую величину соответствующего показателя (по умолчанию 95%).

    В группе «Параметры вывода» нужно указать, в какой области будет отображаться результат вычисления. Существует три варианта:

    • Область на текущем листе;
    • Другой лист;
    • Другая книга (новый файл).

    Остановим свой выбор на первом варианте, чтобы исходные данные и результат размещались на одном рабочем листе. Ставим переключатель около параметра «Выходной интервал» . В поле напротив данного пункта ставим курсор. Щелкаем левой кнопкой мыши по пустому элементу на листе, который призван стать левой верхней ячейкой таблицы вывода итогов расчета. Адрес данного элемента должен высветиться в поле окна «Регрессия» .

    Группы параметров «Остатки» и «Нормальная вероятность» игнорируем, так как для решения поставленной задачи они не важны. После этого клацаем по кнопке «OK» , которая размещена в правом верхнем углу окна «Регрессия» .

  7. Программа производит расчет на основе ранее введенных данных и выводит результат в указанный диапазон. Как видим, данный инструмент выводит на лист довольно большое количество результатов по различным параметрам. Но в контексте текущего урока нас интересует показатель «R-квадрат» . В данном случае он равен 0,947664, что характеризует выбранную модель, как модель хорошего качества.

Способ 3: коэффициент детерминации для линии тренда

Кроме указанных выше вариантов, коэффициент детерминации можно отобразить непосредственно для линии тренда в графике, построенном на листе Excel. Выясним, как это можно сделать на конкретном примере.

  1. Мы имеем график, построенный на основе таблицы аргументов и значений функции, которая была использована для предыдущего примера. Произведем построение к нему линии тренда. Кликаем по любому месту области построения, на которой размещен график, левой кнопкой мыши. При этом на ленте появляется дополнительный набор вкладок – «Работа с диаграммами» . Переходим во вкладку «Макет» . Клацаем по кнопке «Линия тренда» , которая размещена в блоке инструментов «Анализ» . Появляется меню с выбором типа линии тренда. Останавливаем выбор на том типе, который соответствует конкретной задаче. Давайте для нашего примера выберем вариант «Экспоненциальное приближение» .
  2. Эксель строит прямо на плоскости построения графика линию тренда в виде дополнительной черной кривой.
  3. Теперь нашей задачей является отобразить собственно коэффициент детерминации. Кликаем правой кнопкой мыши по линии тренда. Активируется контекстное меню. Останавливаем выбор в нем на пункте «Формат линии тренда…» .

    Для выполнения перехода в окно формата линии тренда можно выполнить альтернативное действие. Выделяем линию тренда кликом по ней левой кнопки мыши. Перемещаемся во вкладку «Макет» . Клацаем по кнопке «Линия тренда» в блоке «Анализ» . В открывшемся списке клацаем по самому последнему пункту перечня действий – «Дополнительные параметры линии тренда…» .

  4. После любого из двух вышеуказанных действий запускается окошко формата, в котором можно произвести дополнительные настройки. В частности, для выполнения нашей задачи необходимо установить флажок напротив пункта «Поместить на диаграмму величину достоверности аппроксимации (R^2)» . Он размещен в самом низу окна. То есть, таким образом мы включаем отображение коэффициента детерминации на области построения. Затем не забываем нажать на кнопку «Закрыть» внизу текущего окна.
  5. Значение достоверности аппроксимации, то есть, величина коэффициента детерминации, будет отображено на листе в области построения. В данном случае эта величина, как видим, равна 0,9242, что характеризует аппроксимацию, как модель хорошего качества.
  6. Абсолютно точно таким образом можно устанавливать показ коэффициента детерминации для любого другого типа линии тренда. Можно менять тип линии тренда, произведя переход через кнопку на ленте или контекстное меню в окно её параметров, как было показано выше. Затем уже в самом окне в группе «Построение линии тренда» можно переключиться на другой тип. Не забываем при этом контролировать, чтобы около пункта «Поместить на диаграмму величину достоверности аппроксимации» был установлен флажок. Завершив вышеуказанные действия, щелкаем по кнопке «Закрыть» в нижнем правом углу окна.
  7. При линейном типе линия тренда уже имеет значение достоверности аппроксимации равное 0,9477, что характеризует эту модель, как ещё более достоверную, чем рассматриваемую нами ранее линию тренда экспоненциального типа.
  8. Таким образом, переключаясь между разными типами линии тренда и сравнивая их значения достоверности аппроксимации (коэффициент детерминации), можно найти тот вариант, модель которого наиболее точно описывает представленный график. Вариант с самым высоким показателем коэффициента детерминации будет наиболее достоверным. На его основе можно строить самый точный прогноз.

    Например, для нашего случая опытным путем удалось установить, что самый высокий уровень достоверности имеет полиномиальный тип линии тренда второй степени. Коэффициент детерминации в данном случае равен 1. Это говорит о том, что указанная модель абсолютно достоверная, что означает полное исключение погрешностей.

    Но, в то же время, это совсем не значит, что для другого графика тоже наиболее достоверным окажется именно этот тип линии тренда. Оптимальный выбор типа линии тренда зависит от типа функции, на основании которой был построен график. Если пользователь не обладает достаточным объемом знаний, чтобы «на глаз» прикинуть наиболее качественный вариант, то единственным выходом определения лучшего прогноза является как раз сравнение коэффициентов детерминации, как было показано на примере выше.

Коэффициент множественной детерминации характеризует, на сколько процентов построенная модель регрессии объясняет вариацию значений результативной переменной относительно своего среднего уровня, т. е. показывает долю общей дисперсии результативной переменной, объяснённой вариацией факторных переменных, включённых в модель регрессии.

Коэффициент множественной детерминации также называется количественной характеристикой объяснённой построенной моделью регрессии дисперсии результативной переменной. Чем больше значение коэффициента множественной детерминации, тем лучше построенная модель регрессии характеризует взаимосвязь между переменными.

Для коэффициента множественной детерминации всегда выполняется неравенство вида:

Следовательно, включение в линейную модель регрессии дополнительной факторной переменной xn не снижает значения коэффициента множественной детерминации.

Коэффициент множественной детерминации может быть определён не только как квадрат множественного коэффициента корреляции, но и с помощью теоремы о разложении сумм квадратов по формуле:

где ESS (Error Sum Square) – сумма квадратов остатков модели множественной регрессии с n независимыми переменными:

TSS (TotalSumSquare) – общая сумма квадратов модели множественной регрессии с n независимыми переменными:

Однако классический коэффициент множественной детерминации не всегда способен определить влияние на качество модели регрессии дополнительной факторной переменной. Поэтому наряду с обычным коэффициентом рассчитывают также и скорректированный (adjusted) коэффициент множественной детерминации, в котором учитывается количество факторных переменных, включённых в модель регрессии:

где n – количество наблюдений в выборочной совокупности;

h – число параметров, включённых в модель регрессии.

При большом объёме выборочной совокупности значения обычного и скорректированного коэффициентов множественной детерминации отличаться практически не будут.

24. Парный регрессионный анализ

Одним из методов изучения стохастических связей между признаками является регрессионный анализ.

Регрессионный анализ представляет собой вывод уравнения регрессии, с помощью которого находится средняя величина случайной переменной (признака-результата), если величина другой (или других) переменных (признаков-факторов) известна. Он включает следующие этапы:

выбор формы связи (вида аналитического уравнения регрессии);

оценку параметров уравнения;

оценку качества аналитического уравнения регрессии.

Наиболее часто для описания статистической связи признаков используется линейная форма. Внимание к линейной связи объясняется четкой экономической интерпретацией ее параметров, ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчетов преобразуют (путем логарифмирования или замены переменных) в линейную форму.

В случае линейной парной связи уравнение регрессии примет вид:

Параметры данного уравнения а и b оцениваются по данным статистического наблюдения x и y. Результатом такой оценки является уравнение: , где,- оценки параметров a и b, - значение результативного признака (переменной), полученное по уравнению регрессии (расчетное значение).

Наиболее часто для оценки параметров используют метод наименьших квадратов (МНК).

Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии. Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (u) и независимой переменной (x).

Задача оценивания параметров линейного парного уравнения методом наименьших квадратов состоит в следующем:

получить такие оценки параметров ,, при которых сумма квадратов отклонений фактических значений результативного признака - yi от расчетных значений – минимальна.

Формально критерий МНК можно записать так:

Проиллюстрируем суть данного метода графически. Для этого построим точечный график по данным наблюдений (xi ,yi, i=1;n) в прямоугольной системе координат (такой точечный график называют корреляционным полем). Попытаемся подобрать прямую линию, которая ближе всего расположена к точкам корреляционного поля. Согласно методу наименьших квадратов линия выбирается так, чтобы сумма квадратов расстояний по вертикали между точками корреляционного поля и этой линией была бы минимальной.

Математическая запись данной задачи:

Значения yi и xi i=1; n нам известны, это данные наблюдений. В функции S они представляют собой константы. Переменными в данной функции являются искомые оценки параметров - ,. Чтобы найти минимум функции 2-ух переменных необходимо вычислить частные производные данной функции по каждому из параметров и приравнять их нулю, т.е.

В результате получим систему из 2-ух нормальных линейных уравнений:

Решая данную систему, найдем искомые оценки параметров:

Правильность расчета параметров уравнения регрессии может быть проверена сравнением сумм

(возможно некоторое расхождение из-за округления расчетов).

Знак коэффициента регрессии b указывает направление связи (если b>0, связь прямая, если b <0, то связь обратная). Величина b показывает на сколько единиц изменится в среднем признак-результат -y при изменении признака-фактора - х на 1 единицу своего измерения.

Формально значение параметра а – среднее значение y при х равном нулю. Если признак-фактор не имеет и не может иметь нулевого значения, то вышеуказанная трактовка параметра а не имеет смысла.

Оценка тесноты связи между признаками осуществляется с помощью коэффициента линейной парной корреляции - rx,y. Он может быть рассчитан по формуле:

Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:

Область допустимых значений линейного коэффициента парной корреляции от –1 до +1. Знак коэффициента корреляции указывает направление связи. Если rx, y>0, то связь прямая; если rx, y<0, то связь обратная.

Если данный коэффициент по модулю близок к единице, то связь между признаками может быть интерпретирована как довольно тесная линейная. Если его модуль равен единице ê rx , y ê =1, то связь между признаками функциональная линейная. Если признаки х и y линейно независимы, то rx,y близок к 0.

Для оценки качества полученного уравнения регрессии рассчитывают теоретический коэффициент детерминации – R2yx:

где d 2 – объясненная уравнением регрессии дисперсия y;

e 2- остаточная (необъясненная уравнением регрессии) дисперсия y;

s 2 y - общая (полная) дисперсия y .

Коэффициент детерминации характеризует долю вариации (дисперсии) результативного признака y, объясняемую регрессией (а, следовательно, и фактором х), в общей вариации (дисперсии) y. Коэффициент детерминации R2yx принимает значения от 0 до 1. Соответственно величина 1-R2yx характеризует долю дисперсии y, вызванную влиянием прочих неучтенных в модели факторов и ошибками спецификации.

При парной линейной регрессии R 2yx=r2 yx.

Сoefficient of determination

Синонимы: Коэффициент смешанной корреляции

Статистический показатель, отражающий объясняющую способность уравнения регрессии и равный отношению суммы квадратов регрессии SSR к общейвариации SST:

где – уровень ряда,– смоделированное значение,– среднее по всем уровням ряда.

Данный показатель является статистической мерой согласия, с помощью которой можно определить, насколько уравнение регрессии соответствует реальным данным.

Коэффициент детерминации изменяется в диапазоне от 0 до 1. Если он равен 0, это означает, что связь между переменными регрессионной модели отсутствует, и вместо нее для оценки значения выходной переменной можно с таким же успехом использовать простое среднее ее наблюдаемых значений. Напротив, если коэффициент детерминации равен 1, это соответствует идеальной модели, когда все точки наблюдений лежат точно налинии регрессии , т.е. сумма квадратов их отклонений равна 0. На практике, если коэффициент детерминации близок к 1, это указывает на то, что модель работает очень хорошо (имеет высокую значимость), а если к 0, то это означает низкую значимость модели, когдавходная переменная плохо "объясняет" поведение выходной, т.е. линейная зависимость между ними отсутствует. Очевидно, что такая модель будет иметь низкую эффективность.

Коэффициент детерминации (R 2 )- это долядисперсии отклонений зависимой переменной от еёсреднего значения , объясняемая рассматриваемоймоделью связи (объясняющими переменными). Модель связи обычно задается как явная функция от объясняющих переменных. В частном случае линейной связиR 2 является квадратомкоэффициента корреляции между зависимой переменной и объясняющими переменными.

Общая формула для вычисления коэффициента детерминации:

где y i - наблюдаемое значение зависимой переменной, аf i - значение зависимой переменной предсказанное по уравнению регрессии-среднее арифметическое зависимой переменной.

При проверке гипотезы о наличии связи модель связи может быть неизвестна. Тогда ее задают в виде кусочно-постоянной функции (в этом случае коэффициент детерминации равен квадрату корреляционного отношения) либо оценивают неизвестные значения функции связи, используя методы сглаживания эмпирической зависимости (напримерметод скользящих средних ) .

Вариация признака определяется различными факторами, часть этих факторов можно выделить, если статистическую совокупность разделить на группы по определенному признаку. Тогда, наряду с изучением вариации признака по совокупности в целом, можно изучить вариацию для каждой из составляющих ее группы и между этими группами. В простом случае, когда совокупность разделена на группы по одному фактору, изучение вариации достигается посредством вычисления и анализа трех видов дисперсий: общей, межгрупповой и внутригрупповой.

Эмпирический коэффициент детерминации

Эмпирический коэффициент детерминации широко применяется в статистическом анализе и является показателем, представляющим долю межгруппопой дисперсии в результативного признака и характеризует силу влияния группировочного признака на образование общей вариации. Он может быть рассчитан по формуле:

Показывает долю вариации результативного признака у под влиянием факторного признака х, он связан с коэффициентом корреляции квадратичной зависимостью. При отсутствии связи эмпирический коэффициент детерминации равен нулю, а при функциональной связи - единице.

Например, когда изучается зависимость производительности труда рабочих от их квалификации коэффициент детерминации равен 0,7, то на 70% вариация производительности труда рабочих обусловлена различиями в их квалификации и на 30% - влиянием прочих факторов.

Эмпирическое корреляционное отношение - это квадратный корень из коэффициента детерминации. Отношение показывает тесноту связи между группировочным и результативным признаками. Эмпирическое корреляционное отношение принимает значения от -1 до 1. Если связи нет, то корреляционное отношение равняется нулю, т.е. все групповые средние равняются между собой и межгрупповой вариации нет. Значит, группировочный признак не влияет на образование общей вариации.

Если связь функциональная, то корреляционное отношение равняется единице. В таком случае дисперсия групповых средних равна общей дисперсии, т.е. внутригрупповой вариации нет. Это значит, что группировочный признак полностью определяет вариацию результативного признака.

Чем ближе значение корреляционного отношения к единице, тем сильнее и ближе к функциональной зависимости связь между признаками. Для качественной оценки силы связи на основе показателя эмпирического коэффициента корреляции можно использовать соотношение Чэддока.

Соотношение Чэддока

  • Связь весьма тесная — коэффициент корреляции находится в интервале 0,9 — 0,99
  • Связь тесная — Rxy = 0,7 — 0,9
  • Связь заметная — Rxy = 0,5 — 0,7
  • Связь умеренная — Rxy = 0,3 — 0,5
  • Связь слабая — Rxy = 0,1 — 0,3